author: niplav, created: 2024-08-06, modified: 2024-09-10, language: english, status: in progress, importance: 2, confidence: likely
Solutions to the video series “From Zero to Geo”.
$\overset{\rightarrow}{v}_1$
: $3$
$\overset{\rightarrow}{v}_2$
: $2$
$\overset{\rightarrow}{v}_3$
: $1$
$\overset{\rightarrow}{v}_4$
: $5$
$\overset{\rightarrow}{v}_5$
: $2\sqrt{2}$
$2 \overset{\rightarrow}{v}_1$
: $[6, 0]$
$\overset{\rightarrow}{v}_2$
: $[0, -1]$
$\overset{\rightarrow}{v}_3$
: $[3, 0]$
$\overset{\rightarrow}{v}_4$
: $\overset{\rightarrow}{0}$
$\overset{\rightarrow}{v}_5$
: $[-3, -3]$
$\overset{\rightarrow}{v}_1+\overset{\rightarrow}{v}_1=[6, 0]$
$\overset{\rightarrow}{v}_2+\overset{\rightarrow}{v}_3=[1, -2]$
$\overset{\rightarrow}{v}_5+\overset{\rightarrow}{v}_1=[-3, -2]$
$\overset{\rightarrow}{v}_4+3\overset{\rightarrow}{v}_3=[0, -4]$
$3\overset{\rightarrow}{v}_3+\overset{\rightarrow}{v}_1=[0, 0]$
Subtraction:
$\overset{\rightarrow}{v}_1-\overset{\rightarrow}{v}_2=\overset{\rightarrow}{v}_1+-1
\cdot \overset{\rightarrow}{v}_2$
.
Geometrically: Turn around $\overset{\rightarrow}{v}_2$
, then
walk along $\overset{\rightarrow}{v}_1$
and then along the turned
$\overset{\rightarrow}{v}_2$
.
$\overset{\rightarrow}{v}_1$
: $[-3, 0]$
$\overset{\rightarrow}{v}_2$
: $[0, 1]$
$\overset{\rightarrow}{v}_3$
: $[-1, 0]$
$\overset{\rightarrow}{v}_4$
: $[-3, 4]$
$\overset{\rightarrow}{v}_5$
: $[2, 2]$
$\overset{\rightarrow}{v}_1-\overset{\rightarrow}{v}_2=[3, 2]$
$\overset{\rightarrow}{v}_5-\overset{\rightarrow}{v}_3=[-1, -2]$
$\overset{\rightarrow}{v}_4-\overset{\rightarrow}{v}_1=[0, -4]$
$\overset{\rightarrow}{v}_1-\overset{\rightarrow}{v}_3=[4, 0]$
$\overset{\rightarrow}{v}_4-\overset{\rightarrow}{v}_4=[0, 0]$
$(1+e_1+e_2)+(2+e_1+3e_2)=3+2e_1+4e_2$
$(-3+2e_1-e_2)+(-8-7e_1-6e_2)=5-5e_1-7e_2$
$(4-3e_1-5e_2)+(-4+3e_1-5e_2)=0$
$(2)+(-1+3e_1-2e_2)=1+3e_1+2e_2$
$(-1+e_2)+(-3e_1+3e_2)=-1-3e_1+4e_2$
$(-1+3e_1+2e_2)+0=-1+3e_1+2e_2$