author: niplav, created: 2022-07-15, modified: 2024-06-27, language: english, status: finished, importance: 6, confidence: certain
Iqisa is a library for handling and comparing forecasting datasets from different platforms.
The eventual success of my archives reinforced my view that public permission-less datasets are often a bottleneck to research: you cannot guarantee that people will use your dataset, but you can guarantee that they won’t use it.
—Gwern Branwen, “2019 News”, 2019
Iqisa is a collection of forecasting datasets and a simple library for handling those datasets. Code and data available here. Documentation is here.
So far it contains data from:
for a total of ~4.38m forecasts, as well as code for handling private Metaculus data (available to researchers on request to Metaculus), but I plan to also add data from various other sources.
The documentation can be found here, but a simple example for using the library is seeing whether traders with more than 100 trades have a better Brier score than traders in general:
import gjp
import iqisa as iqs
market_fcasts=gjp.load_markets()
def brier_score(probabilities, outcomes):
return np.mean((probabilities-outcomes)**2)
def brier_score_user(user_forecasts):
user_right=(user_forecasts['outcome']==user_forecasts['answer_option'])
probabilities=user_forecasts['probability']
return np.mean((probabilities-user_right)**2)
trader_scores=iqs.score(market_fcasts, brier_score, on=['user_id'])
filtered_trader_scores=iqs.score(market_fcasts.groupby(['user_id']).filter(lambda x: len(x)>100), brier_score, on=['user_id'])
And we can see:
>>> np.mean(trader_scores)
score 0.159194
dtype: float64
>>> np.mean(filtered_trader_scores)
score 0.159018
dtype: float64
Concluding that more experienced traders are only very slightly better at trading.
Iqisa offers some advantages over existing datasets:
Since this is a project I'm now doing in my free time, it might not be as polished as it should be. Sorry :-/
If you decide to work with this library, feel free to contact me.
NA
more often than they are right now.Credits go to Arb Research for funding the first 80% of this work, and Misha Yagudin in particular for guidance and mentorship.
Thanks also to hrosspet for making the library more usable.