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NICHOLAS R. MILLER 
University of Maryland 

Baltimore County 

Graph- Theoretical Approaches 
to the Theory of Voting* 

In this article, language, concepts, and theorems from the theory of directed graphs 
are used to characterize and analyze the structure of majority preference. A number of 
results are then derived concerning "sincere," "sophisticated," and "cooperative" voting 
decisions under two common majority voting procedures. These results supplement the 
work of Black and Farquharson. Perhaps contrary to "common-sense" thinking, general 
strategic manipulation of voting processes has beneficial consequences. 

It is widely recognized-and not only by political scientists-that the 
decisions of a voting body may be affected not only by such obviously 
relevant matters as the preferences of its members and their participation in 
or absence from particular votes, but also by such "technical" matters as the 
nature of the voting procedure and the order in which proposals are voted on. 
It is also recognized that voting may have "gamelike" characteristics offering 
strategic opportunities both to voters as individuals and to voters in coali- 
tions. Finally, most political scientists-though probably few politicians or 
citizens-are by now aware of the "paradox of voting" and may have some 
sense of its connection with these questions of decision, procedure, and 
strategy. 

Over the past decade or so a somewhat technical literature on the theory 
of voting has developed in the "public choice" area. The present article adds 
to this literature by presenting a number of new propositions concerning 
majority voting under two common voting procedures. These propositions 
pertain to the questions alluded to in the first paragraph. These new results, 
together with some more familiar ones, are obtained by employing language, 
concepts, and theorems from the mathematical theory of directed graphs. In 
these respects, the article will be of interest primarily to specialists in the area 

*This article is in part a combination and revision of two unpublished papers: 
"Propositions on the Order of Voting," presented to the Public Choice Society meeting, 
1975; and "Mathematical Structures and Political Theory," originally presented to a 
Department of Political Science faculty seminar at the University of Maryland Baltimore 
County. A UMBC Summer Fellowship helped me to complete this work. I would like 
especially to thank W. Phillips Shively for his very helpful editorial guidance. 
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770 Nicholas R. Miller 

of voting theory. But, in addition, I have taken care to write this article in 
such a way that it can reach a wider audience,l and I hope that it will 
demonstrate more generally the utility of the theory of directed graphs in the 
construction of political theory. It should, therefore, serve a methodological 
purpose as well. 

The modern theory of voting is a part of the abstract social choice theory 
that received its original impetus from Kenneth Arrow (1951). But the bulk 
of the social choice literature does not deal with the voting process per se 
(though some titles suggest otherwise). The portion that does derives in 
particular from Duncan Black (1958) and works largely within the framework 
that Black established. Essentially, Black was concerned, as we are here, with 
a voting body of any type-for example, a "committee," a "legislature," or 
even an "electorate"-that adopts, under some specified procedure, one 
discrete "proposal" (as we shall say)-or "alternative," "motion," "candi- 
date," etc.-out of some larger finite set as its decision. 

Black's work is almost entirely innocent of game-theoretical considerations 
and does not address strategic questions. It remained for Robin Farquharson 
(1969) to demonstrate that these strategic questions were amenable to 
resolution; but, apart from exhaustively examining the case of three voters 
and three proposals, Farquharson does not state any general results concern- 
ing voting decisions, nor does he clearly indicate how such results might be 
obtained. 

Roughly speaking then, this article picks up where Black and Farquharson 
left off. In the first section, the necessary graph theory is introduced. In the 
second section, which constitutes the bulk of the article, the voting theory 
results are presented. In the brief concluding section, certain general patterns 
in these results are identified and discussed. 

1. Tournaments and Majority Preference 

A directed graph, or digraph, is a collection of "points," finite in number, 
and of "directed lines" between (some) pairs of these points. We designate by 
V the set of all points and use lowercase letters x, y, z, etc., to refer to 

'No mathematical knowledge is presumed beyond familiarity with the basic language 
of sets. I have held notation to a minimum, and all statements are presented in verbal 
(though I believe quite precise) form. The reasoning is definitely of a mathematical 
nature but it is also elementary and-except for part of the discussion in Section 
2:d-uncomplicated. Three basic graph-theoretical theorems are presented without 
proof; footnotes refer the reader to proofs in the standard text (Harary, et al., 1965). 
Otherwise the article is self-contained. 
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FIGURE 1 

Two Diagrammatic Representations of the Same Digraph 

individual points. If there is a directed line from point x to point y, we write 
x -e y and say that x dominates y. Digraphs may be represented by means of 
diagrams such as those shown in Figure 1. The geometrical arrangement of 
the diagram is irrelevant to the structure of the digraph it represents; thus the 
two diagrams in Figure 1 represent identical digraphs. 

The set of all points dominated by x is designated D(x) and the set of all 
points that dominate x is designated F(x). Point x is undominated if no other 
point dominates x. A path from x to y is a sequence of distinct points and 
directed lines x -+ z . .. -> y. A complete path includes all points in the 
digraph. Point y is reachable from x if there is a path from x to y. Point x is 
a source if every other point is reachable from x. A cycle is a path x y?. .. 

together with the path y -e x (that is a "path" that "repeats itself"). 

THEOREM 1. A digraph with no undominated point has a cycle.2 

A semi-path from x to y is an "improper path" from x to y in which some 
of the directed lines may be pointing in the wrong direction, e.g., x e z v- v 
e y. A semi-cycle is a semi-path from x to y together with the path y -+ x or y 
v x. A digraph is connected if there is a semi-path between every pair of 

2This result is virtually self-evident; in any case, it can be easily proved. See Harary, 
et al. (1965), pp. 64-65, where a "point of indegree zero" is an undominated point (and 
a "point of outdegree zero" is a point that dominates no other point). 
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FIGURE 2 

A Tree 

points. A tree, such as the digraph represented in Figure 2, is a digraph with a 
source and no semi-cycles. 

THEOREM 2. A connected digraph is a tree if and only if exactly one point 
is undominated and every other point is dominated exactly once.3 

It follows that a tree has at least one point that dominates no others. And 
it is natural to designate the unique undominated point the initial point of 
the tree and to designate the points that dominate no others the end points of 
the tree. 

A digraph is complete if, for every pair of points, at least one dominates 
the other. A digraph is asymmetric if, for every pair of points, no more than 
one dominates the other. A tournament, such as the digraph shown in Figure 
3, is a digraph that is both complete and asymmetric-that is, for every pair of 
points exactly one dominates the other.4 Obviously, a tournament (or any 
other complete digraph) has at most one undominated point, which domi- 
nates every other point. 

A digraph is transitive if, whenever x dominates y and y dominates z, then 

3See Harary, et al., (1965), pp. 283-284, where a "weak" digraph is a connected 
digraph. 

4"'The reason for the name is that such digraphs represent the structures of round- 
robin tournaments, in which the players (or teams) engage in game that cannot end in a 
tie and in which every player plays each other exactly once. Thus if the points represent 
players and each line represents the relationship 'defeats,' the digraph of a round-robin 
tournament is complete and asymmetric." (Harary, et al., 1965, p. 289.) 
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FIGURE 3 

A Tournament 

also x dominates z. Clearly a tournament is transitive if and only if it has no 
cycles, in which case it is a strong ordering. 

The potential relevance of tournaments to the theory of majority voting 
should be clear. Consider a voting body that must choose one proposal out of 
some larger set. For any pair of proposals x and y, (1) a majority of voters 
prefers x to y or (2) a majority of voters prefers y to x. Clearly only one of 
these two statements can be true-that is, majority preference is asymmetric. 
Further, if we assume (as we do here) that the number of voters is odd and 
that they all have strong preferences (that is, none is indifferent between any 
two proposals), at least one of these two statements must be true-that is, 
majority preference is then complete. Thus we have the following: 

PROPOSITION A. Given an odd number of voters with strong preferences, 
the system of majority preference over proposals is a tournament.5 

It may be thought desirable for the voting body to make its decision in 
accordance with the principle of majority rule, for example as it has been 
stated by Robert Dahl (1956, pp. 37-38): 

THE RULE: The principle of majority rule prescribes that in choosing among 
alternatives, the alternative preferred by the greater number is to be selected. 

'This relationship has been formally noted by Harary, et al., (1965), pp. 213-215; 
Harary and Moser (1966); Taylor (1968); and Bjurulf (1973). I owe a great deal to 
Taylor's article for stimulating my work in this area and especially first directing me 
towards graph theory. 
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774 Nicholas R. Miller 

That is, given two or more alternatives x, y, etc., in order for x to be 
government policy it is a necessary and sufficient condition that the number 
who prefer x to any single alternative is greater than the number who prefer 
any single alternative to x. 

The second part, at least, of Dahl's statement clearly requires that a 
proposal, in order to be government policy, must be preferred by majorities 
to every other proposal-that is, dominate every other proposal. Thus, given 
our assumptions, the principle of majority rule can be translated as follows: 

THE RULE: A proposal should be the voting decision-that is, should be 
chosen by the voting body-if and only if it is the undominated proposal in 
the system of majority preference. 

Because majority preference is a tournament, there is at most one un- 
dominated proposal. But a tournament may have cycles, so an undominated 
proposal might not exist, in which case it would be logically impossible to 
comply with The Rule. But are we anticipating a difficulty that can never 
arise? While we have seen that every system of majority preference is a 
tournament, the converse has not yet been established. It is clear that if there 
are cycles in the preferences of individual voters (so that, for example, a voter 
prefers x to y and y to z and z to x), majority preference may be cyclical as 
well. But it is both conventional and plausible to assume (as we do here) that 
individual preferences are transitive orderings.6 So the question is whether 
this restriction on individual preferences is sufficient to bring about a similar 
restriction on majority preference. As is by now rather well known, the 
answer is no; a system of majority preference may have cycles, and thus have 
no undominated outcome, even when generated by individual preference 
orderings. This "paradox of voting" is usually demonstrated by example, but 
here we present a more general result-the converse of Proposition A. 

PROPOSITION B. Every tournament is a system of majority preference, 
where voters are finite in number and have strong preference orderings.7 

6But in fact this assumption is necessary only for Lemma 3 and Proposition 10, 
which rests on the lemma. 

7This theorem was first stated by McGarvey (1953), and I have followed his proof. 
This proof requires 2(m ) voters, an even number, where m is the number of proposals. 
We can add one more voter to make the total odd; since every majority preference 
"carries" by exactly two "votes," this last voter, whatever his preferences, cannot alter 
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Consider any arbitrarily constructed tournament and any pair of points 
such that x dominates y. Let there be a pair of voters wlho both prefer x to y 
but who disagree with respect to every other pair of proposals. And let there 
be pairs of other voters with preferences of similar form with respect to each 
of the other pairs of proposals. Then altogether we have twice as many voters 
as there are pairs of proposals, and these voters have strong preference 
orderings such that, for each pair of proposals, the preferences of all but two 
of the voters cancel each other out and the common preference of the two 
remaining voters determines majority preference in the required manner. 

Proposition B has two implications. First, the principle of majority rule 
must be replaced with some broader criterion. And second, we must study 
the structure of tournaments in their full generality, even if our interest is 
only in their application to majority voting. 

With respect to the first implication, when no undominated proposal 
exists, we may wish to focus attention on the minimal set of proposals that 
collectively possess the property of an undominated proposal. 

DEFINITION: A minimal undominated (or Condorcet) set V* of points in a 
tournament is a non-empty set of points such that: 

Condition I: no point in V* is dominated by any point not in V*; and 
Condition II: no proper subset of V* meets Condition I8 

It is clear that if an undominated point x exists, the minimal undominated 
set includes x and no other point. But a unique minimal undominated set 
exists in any case. 

the system of majority preference. And while 2(m) = m(m-1) voters are required for this 
proof, it can be further shown that no more than m+1 (m odd) or m+2 (m even) voters 
are ever required to generate any arbitrary system of majority preference. See Stearns 
(1959). 

8There is no established term in graph theory to designate this set of points. To the 
best of my knowledge, this concept was first defined and employed in voting theory by 
Ward (1961), who used the term "majority set." The term "Condorcet set" is due to 
Good (1971). (The Marquis de Condorcet, an eighteenth-century French philosopher 
and mathematician, is generally credited with the initial discovery of the "paradox of 
voting" and made other significant contributions to the early theory of voting; see Black, 
1958, pp. 159-180.) The term "top cycle" is sometimes used in the voting theory 
literature, which designation anticipates what is formally proved in Theorem 6 below. 
The Condorcet set is identical to the "I" set and equivalent, in a tournament, to the 
"GOCHA" set, both defined by Schwartz (1975). Also see Kadane (1966). 
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776 Nicholas R. Miller 

THEOREM 3. Every tournament has exactly one minimal undominated (or 
Condorcet) set V*. 

We must demonstrate both existence (that every tournament has at least 
one such set) and uniqueness (that no tournament has more than one such 
set).9 

Existence. Trivially, the set V of all points meets Condition I. If no proper 
subset of V does likewise, then V also meets Condition II and is a minimal 
undominated set. If some proper subset V' of V meets Condition I, we repeat 
for V' the argument just made for V. And so forth until we reach some subset 
of V that meets Condition II, as well as Condition I-which we must find, 
since any one-element subset of V necessarily meets Condition II. 

Uniqueness. Suppose P and Q are two minimal undominated sets. Neither 
can be a subset of the other, for then the more inclusive set would fail to 
meet Condition II. Thus there must be some point x that belongs to P but not 
to Q and some point y that belongs to Q but not to P. Then by Condition I, 
and because a tournament is complete, we have x dominates y and also y 
dominates x. But this is impossible, because a tournament is also asymmetric. 
So P and Q must be identical. 

Given this definition and theorem, we can replace the principle of majority 
rule with the following: 

THE CONDORCET CRITERION. A proposal should be the voting decision 
only if it belongs to the minimal undominated (or Condorcet) set of pro- 
posals. 

Since the Condorcet set includes only the undominated proposal whenever 
such a proposal exists, the Condorcet criterion incorporates the principle of 
majority rule whenever the latter can be followed. Otherwise-that is, in the 
absence of an undominated proposal-the Condorcet criterion entails no 
definitive prescription, since the Condorcet set then includes several (and 
possibly all) proposals; but it is always logically possible to comply with the 
criterion. 

From now on we will speak of the Condorcet set, rather than the minimal 
undominated set. And we now turn to act on the second implication of 
Proposition B-that is, to investigate the structure of tournaments in more 
detail. 

9Cf. Good (1971), pp. 98-99, and Schwartz (1975), pp. 22-23. 
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We first state what is probably the best known result concerning tourna- 
ments. 

THEOREM 4. Every tournament has a complete path. 10 

We next present two "lemmas"-that is, preliminary propositions to be 
used in demonstrating the subsequent theorems. 

LEMMA 1. In a tournament, if x is reachable from y and y is reachable from 
x, there is a cycle that includes both x and y. 

Suppose, without loss of generality, that x -+ y. By asymmetry, we cannot 
have y -* x, so x must be reachable from y by some path y -+ z x ... -x 

giving us the cycle x - y -- z - -. . . x. 

LEMMA 2. In a tournament, if there is a cycle including all the points in the 
set V' and there is another cycle including all the points in the set V", and if 
V' and V" intersect, there is a cycle including all the points in the union of V' 
and V". 

Figure 4 shows two such cycles with x (at least) in common. If y - z, the 
cycle to the right can be enlarged to include y. Otherwise, i.e., if z - y, the 
cycle to the left can be enlarged to include z. In either case, we now have two 
cycles with two points (at least) in common, x and (let us say) y. Proceeding 
as before, the cycle to the right can now be enlarged to include v or the cycle 
to the left to include z. Continuing in this manner, we construct a cycle 
including all the points in the union of V' and V .` 

THEOREM 5. In a tournament, any point in the Condorcet set V* is 
reachable from any other point in V*. 

Consider any two points x and y, both in V*, and suppose-contrary to 
the proposition-that y is not reachable from x. Now consider the subset V** 
of all points in V* other than x and all points reachable from x. But then (1) 
V** is not empty and (2) no point in V** is dominated by any point not in 
V**. Accordingly V** meets Condition I and V* fails to meet Condition II, 
contradicting the assumption that V* is the Condorcet set. 

?0See Harary, et al. (1965), p. 295. 
" Cf. Black (1958), pp. 48-49. 
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FIGURE 4 

Intersecting Cycles 

THEOREM 6. In a tournament without an undominated point, there is a 
cycle including all the points in the Condorcet set V*. 

This follows directly from the previous theorem and the two lemmas. 
Clearly no such cycle can also include points not in V*, for them some point 
in V* would be dominated by some point not in V*, contradicting Condition 
I. Thus it further follows that if there is no undominated point, the Con- 
dorcet set includes at least three points. 

THEOREM 7. In a tournament, the following statements are equivalent: 
(1) there is a complete path beginning with point x; 
(2) point x is a source; and 
(3) point x belongs to the Condorcet set V*. 

First, it is obvious and immediate that (1) implies (2). 
Next, we show that (2) implies (3). Suppose that x does not belong to V* 

and consider some point y that does belong to V*. By Condition I, we cannot 
have x -- y; nor can we have x -- z -* y, for then x -- z implies that z is not in 
V* while z -- y implies the reverse; nor can we have x -* z -* v -- y; and so forth. 
Thus x cannot be a source. So if x is a source, it must belong to the 
Condorcet set. 

Next we show that (3) implies (1). We know by Theorem 4 that the 
tournament has a complete path, and if x is undominated-that is, if x is the 
only point in V*-clearly any complete path must begin with x. Otherwise- 
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that is, if there is no undominated point and V* includes three or more 
points-we know from Theorem 6 that there is a cycle including all the points 
in V*; thus there is a path including all the points in V* that begins with x, 
say x --. . -* y. And by Theorem 4, the tournament including only the 
points not in V* has a complete path, say v - .. . -. z. Finally, by Condition 
I, we have y - v, giving us the complete path in the full tournament x ... 
e y - v -e. . . 

We now have a cycle of implications: (1) implies (2) implies (3) implies 
(1). Since the relation of logical implication is transitive, the three reverse 
implications must hold as well, so the three statements are equivalent. 

Clearly it is convenient to represent majority preference by means of a 
tournament. We now turn to consider the operation of two specific voting 
procedures, and we will find that the graph-theoretic concepts that have been 
presented, and the results stated in Theorem 7 especially, are extremely 
useful in proving a number of propositions concerning voting decisions. 

2. The Theory of Voting 

In the first section, we considered voters' preferences and analyzed the 
structure of the tournament generated by the preferences of majorities of 
voters. We now turn to consider actual voting decisions under two specific 
"binary" procedures. We consider the general case in which a voting decision 
must be reached out of a set of m proposals. 

A voting procedure is binary if, at every vote, a voter has exactly two 
choices (e.g., "yea" or "nay," "vote for x" or "vote for y") other than 
abstain. 

Under amendment procedure, two proposals are paired for a majority 
vote, the defeated proposal being eliminated as a possible decision; the 
surviving proposal is then paired with a third at the second vote; and so forth. 
The proposal that survives the final or-(m-l)th vote is the decision. 

Under successive procedure, the first proposal is voted up or down on a 
majority basis; if voted up, it is the decision and voting terminates; otherwise, 
the second proposal is voted up or down; and so forth. If the first m-1 
proposals are voted down, the one remaining proposal (probably an "im- 
plicit" proposal to preserve the status quo or to "do nothing") is the 
decision. 12 

12 In naming these procedures, I have followed the usage of Farquharson (1969), pp. 
10-11, 61. Black (1958) calls the former "procedure (cs)" on p. 21 and "ordinary 
committee procedure" thereafter. 
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780 Nicholas R. Miller 

Amendment procedure approximates parliamentary voting in Anglo- 
American legislative bodies in its logical structure, though typical parliamen- 
tary practice differs in a consequential way when separate amendments to the 
main motion are before the voting body. According to Niemi and Bjurulf 
(1976, p. 12), successive procedure is used in a number of continental 
European legislatures. Thus all the results presented below have practical 
relevance. 

It is important to note that under both procedures, the proposals must be 
voted on in some definite order. One critical question is whether-or under 
what conditions-and how the voting decision is affected by the order in 
which proposals are voted on, as well as by the procedure that is used. 

The voting decision depends, of course, not only on the preferences of the 
voters (and possibly the procedure and voting order) but more directly on 
their voting behavior-that is, on the choices they actually make at each vote. 
We assume in the first place that no voter ever abstains. And initially we 
assume that each voter votes "sincerely," so that his voting choices simply 
express his preferences and are not influenced by any strategic calculations. 
Then in the latter part of this section, we consider two types of "strategic" 
voting. A second critical question of course is whether-or under what 
conditions-and how the voting decision depends on whether voting is sincere 
or strategic. 

a. Sincere Voting Decisions under Amendment Procedure 

Under amendment procedure, according to which proposals are explicitly 
paired for votes, a "sincere" voter simply votes for his more preferred 
proposal in each pair. The outcome of a vote thus "reveals" the direction of 
majority preference between the pair of proposals in question. 

It is plausible to suppose that the voting decision may depend on the order 
in which the proposals are voted on. So the first question is to identify the set 
of proposals that can possibly be the voting decision, given an appropriate 
voting order. We have the following necessary condition: 

PROPOSITION 1. Under amendment procedure, proposal x is the sincere 
voting decision only if x is a source. 

Consider the portion of the majority preference tournament "revealed" by 
sincere voting under amendment procedure. The digraph representing "re- 
vealed" majority preference clearly is incomplete (it includes only m-1 
directed lines but all 'm(m-l) pairs of proposals). But by the systematic 
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nature of the procedure, it is connected, and every proposal but one is 
dominated (that is, has been defeated) exactly once and the one remaining 
proposal (which is the decision x) is undominated. Thus by Theorem 2 the 
digraph representing "revealed" majority preference is a tree and the winning 
proposal x is its source.13 It follows that x must also be a source in the 
complete majority preference tournament. 

According to Theorem 7, a proposal is a source if and only if it belongs to 
the Condorcet set. Thus we can restate Proposition 1 in this manner: 

PROPOSITION 1'. Under amendment procedure, the sincere voting decision 
belongs to the Condorcet set. 

Thus sincere voting under amendment procedure complies with the Con- 
dorcet criterion. And it follows that, if there is a unique source (that is, an 
undominated proposal), it is the sincere voting decision regardless of the 
order in which the proposals are voted on. 14 

We have seen that the set of possible sincere voting decisions under 
amendment procedure includes no proposals not in the Condorcet set. But 
does it include all proposals in the Condorcet set? That is, can any proposal in 
the Condorcet set be the decision, given an appropriate voting order? This 
question can be answered affirmatively. 

PROPOSITION 2. Under amendment procedure, for any proposal x that 
belongs to the Condorcet set, there is some order of voting such that x is the 
sincere voting decision. 

By Theorem 7, there is a complete path in the majority preference 
tournament that begins with x. Let the proposals be voted on in the order that 
is the reverse of that entailed by this path; at each vote after the first, the 
newly introduced proposal defeats the proposal surviving from the previous 
vote, and x-introduced in the final vote-is the voting decision."5 Thus there 
is an order of voting-specifically one that puts x last-such that x is the 
decision. 

13 Since the digraph that represents "revealed" majority preference under amend- 
ment procedure is always a tree, it follows that sincere voting under amendment 
procedure can never reveal the extent which majority preference is cyclical or acyclical. 
(But any additional vote would reveal some semi-cycle.) Cf. Marz, et al. (1973). 

14 For this result, together with the demonstration that such a proposal exists if 
preferences are "single-peaked," Black (1958) is best known; see pp. 18, 43. 

1 Cf. Taylor (1968), p. 40. On p. 42 Taylor comes very close to stating Proposition 
2. Also see Black (1958), pp. 40-41 
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Note that the proof of Proposition 2 implies only that there is some order 
of voting that puts x last such that x is the decision. It does not imply that x 
is the decision under every order that puts x last nor that x must be last (or 
even last in the Condorcet set) to be the decision. However, it is clear that 
every proposal that dominates x must be introduced and defeated before x is 
introduced, if x is to be the decision. Therefore, in the absence of an 
undominated proposal, we have the following necessary condition for pro- 
posal x to be the sincere voting decision under amendment procedure: 

Condition III. Every proposal in F(x) and one additional proposal in V* 
must precede x in the order of voting. 

From this it follows that neither of the first two proposals in the Con- 
dorcet set to be introduced into the voting can be the voting decision; and 
therefore, if the Condorcet set includes exactly three proposals, the last of 
the three to be introduced is the decision. 

b. Sincere Voting Decisions under Successive Procedure 

Under successive procedure, according to which proposals are voted up or 
down in sequence, a "sincere" voter votes for a proposal if it is the proposal 
he most prefers of those that remain undefeated; otherwise he votes against. 
Therefore sincere voting under successive procedure does not involve an 
explicit pairing of proposals (except at the (m-I)th vote, if taken), and the 
majority preference tournament is not sufficient to determine which proposal 
is the sincere voting decision in any given case. However, our first proposition 
is a negative one that can be demonstrated simply by example. 

PROPOSITION 3. Under successive procedure, the sincere voting decision 
may not belong to the Condorcet set. 

Accordingly, sincere voting under successive procedure may fail to comply 
with the Condorcet criterion. Suppose that there are three proposals x, y, and 
z, and three voters. Voter 1 prefers x to y to z, voter 2 prefers y to x to z, and 
voter 3 prefers z to y to x. Proposal y is undominated and should be the 
decision, according to the Condorcet criterion. But if successive procedure is 
used and y is voted on first, y will be rejected if voting is sincere, since voters 
1 and 3, who most prefer x and z respectively, will both vote against it. 
(Proposal x will then win the second vote and be the decision.) 

Therefore, the set of possible decisions under successive procedure, in 
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contrast to amendment procedure, includes proposals not in the Condorcet 
set. But it is also clear that, in the example that demonstrated this point, 
proposal y would be the decision if it were not voted on first. We may ask. 
whether this is generally true. That is, can any proposal in the Condorcet set 
be the decision, given an appropriate voting order? As in the case of amend- 
ment procedure, this question can be answered affirmatively. 

PROPOSITION 4. Under successive procedure, for any proposal x that 
belongs to the Condorcet set, there is some order of voting such that x is the 
sincere voting decision. 

First we note that the sincere voting decision is the first proposal x in the 
voting order such that a majority of voters have x as their highest preference 
in the set of proposals that remain undefeated-that is, in the set including x 
and all proposals that follow x in the voting order. Therefore we have the 
following necessary condition for proposal x to be the sincere voting decision 
under successive procedure: 

Condition IV. Every proposal that follows x in the order of voting must 
belong to D(x). 

Now we refer again to Theorem 7 and proceed as in the proof of 
Proposition 2. Let the proposals be voted on in the order that is the reverse of 
that entailed by a complete path beginning with x. Since each proposal is 
dominated by the immediately subsequent proposal, no proposal preceding x 
meets Condition IV; every proposal is defeated until only x-last in the voting 
order-remains, making x the decision. (Proposal x is also the decision if it is 
next to last in the voting order.) Thus there is an order of voting-specifically 
one that puts x last (or next to last)-such that x is the decision. 

Condition IV has a number of other implications: (1) the first proposal in 
the voting order is the decision only if it is undominated; (2) the second 
proposal in the voting order is the decision only if it belongs to the Condorcet 
set or the first proposal is undominated; (3) the third proposal in the voting 
order is the decision only if it belongs to the Condorcet set or the first or 
second proposal is undominated; and (4) any proposal later in the voting 
order, if not in the Condorcet set, is the decision only if all proposals in the 
Condorcet set precede it in the order of voting. It is also clear that a proposal 
dominated by every other proposal cannot be the decision; and that if an 
undominated proposal exists, and if it is last or next to last in the voting 
order, it is the decision. 
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c. Sophisticated Voting Decisions under Successive Procedure 

It is widely acknowledged that, given three or more proposals, sincere 
voting may be inexpedient in some circumstances. This point is probably 
most widely recognized in multi-candidate plurality elections (in which a vote 
for a preferred "minor" candidate may be "wasted"). But it may also be true 
under the binary procedures we are considering. Indeed, the inexpediency of 
sincere voting is quite clear in the example used to demonstrate Proposition 
3. Voting sincerely, voter 3 opposes y at the first vote and thereby brings 
about its defeat and the ultimate adoption of x-his lowest preference. 
Provided that he is informed about the preferences of his fellow voters, voter 
3 can anticipate the unfortunate consequence of his sincere voting and can 
calculate that he would do better by joining voter 2 (for whom sincere voting 
clearly is expedient) in voting for y and thereby achieve the adoption of 
y-his second, rather than lowest, preference. Thus in this case at least the 
"sophisticated" voting decision under successive procedure complies with the 
Condorcet criterion, even though the sincere voting decision does not. 

We can generalize this conclusion by generalizing this analysis. We start out 
with the set of all proposals as possible decisions. As a result of the first vote 
under successive procedure, one proposal either becomes the decision or is 
eliminated as a possible decision. Thus at the second vote (if taken) the set of 
possible decisions has been reduced by one and, as a result of the second vote, 
one of these either becomes the decision or is eliminated. And so forth, until 
the (m-I)th vote, after which only one proposal remains as a possible 
decision. This process of narrowing down the set of possible decisions may be 
represented by a division tree, such as that shown in Figure 5(a) for the case 
of five proposals, x, y, z, v, and w. Note that the division tree is indeed a 
"tree," as the term has been formally defined. The initial point of the tree 
corresponds to the first vote (at which all proposals are possible decisions), 
and each end point corresponds to a termination of voting (at which every 
proposal but one has been eliminated as a possible decision-in other words, a 
decision has been reached). Each path from the initial point to an end point 
represents a particular sequence of votes. In the case of successive procedure 
(but not generally), there is exactly one end point for each proposal-that is, 
there is only one way (one sequence of votes) to reach any given decision. 

Now suppose that the majority preference tournament is that shown in 
Figure 5(b) and that all voters are "sophisticated." Each "sophisticated" 
voter knows that if it comes down to a choice between v and w at the fourth 
and final vote, v becomes the decision. We may call v the anticipated decision 
at this vote and accordingly v has been underlined in Figure 5(a). Now each 
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Division Tree for Successive Procedure and an Example of Sophisticated Voting 

"sophisticated" voter knows further that the choice at the third vote, though 
manifestly a vote on whether to accept or reject z, is in effect a pairwise 
choice between z and v. Since v dominates z, if all voters are "sophisticated," 
v would win this vote also, and v is also the anticipated decision at the third 
vote, so the second vote is in effect a pairwise choice between y and v. And so 
forth. "Pushing" the anticipated decision (underlined) to the initial point in 
the division tree, we see that y is the anticipated decision at the very first 
vote. In other words, y is the sophisticated voting decision in this case.16 

More generally, we see that sophisticated voting under successive proce- 
dure works as if the last two proposals in the voting order were paired for a 
sincere majority vote, the defeated proposal being eliminated and the sur- 

16 This "tree method" for determining the sophisticated voting decision is different 
from-and certainly simpler than-the "reduction method" presented by Farquharson 
(1969), pp. 38-49. For further discussion of this method and its relationship to 
Farquharson's method, see Miller (1973), pp. 345ff, Niemi, et al. (1974), pp. 1-10, and 
McKelvey & Niemi (1976). Niemi, et al., exhaustively examine sincere and sophisticated 
voting decisions under amendment and successive procedure in the case of three 
proposals. In a more recent paper, Niemi and Bjurulf (1976) extend this examination to 
four and (in part) five proposals. Their orientation is one of providing strategic advice: 
how to make a preferred proposal the decision. Most or all of their strategic advice can 
be derived from the more general descriptive propositions presented here. 
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viving proposal being paired with the third to last proposal in the voting order 
for a sincere majority vote, and so forth. In other words, the logical structure 
of sophisticated voting under successive procedure is identical to that of 
sincere voting under amendment procedure when the order of voting is 
reversed. By virtue of this identity, any valid statement concerning sincere 
voting decisions under amendment procedure is valid also for sophisticated 
voting decisions under successive procedure, provided only that any reference 
to the order of voting is reversed. 

Thus we can move directly to the two following counterparts of Proposi- 
tions 1' and 2: 

PROPOSITION 5. Under successive procedure, the sophisticated voting deci- 
sion belongs to the Condorcet set. 

Thus sophisticated voting (unlike sincere voting) under successive proce- 
dure complies with the Condorcet criterion. And it follows that, if there is an 
undominated proposal, it is the sophisticated voting decision regardless of the 
order in which the proposals are voted on (and the example that introduced 
this section was not atypical). 

PROPOSITION 6. Under successive procedure, for any proposal x that 
belongs to the Condorcet set, there is some order of voting such that x is the 
sophisticated voting decision. 

Specifically, there is some order of voting that puts x first. 
Reversing the reference to the order of voting, we have the following 

counterpart of Condition III as a necessary condition, in the absence of an 
undominated proposal, for proposal x to be the sophisticated voting decision 
under successive procedure: 

Condition V. Every proposal in F(x) and one additional proposal in V* mulst 
follow x in the order of voting. 

From this it follows that neither of the last two proposals in the Con- 
dorcet set to be introduced into the voting can be the voting decision; and 
therefore, if the Condorcet set includes exactly three proposals, the first of 
the three to be introduced is the decision. 

It is probably intuitively clear that, when voting is sincere, successive proce- 
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dure favors proposals later in the voting order whereas, when voting is sophis- 
ticated, the reverse is true."7 We can, in fact demonstrate the following: 

PROPOSITION 7. Under successive procedure and a given order of voting, if 
the sincere and sophisticated voting decisions differ, the proposal that is the 
sophisticated decision precedes the proposal that is the sincere decision in the 
order of voting. 

Let x be the sincere decision and y the sophisticated decision, and 
suppose, contrary to the proposition, that y follows x in the order of voting. 
But then Condition IV implies that x dominates y and Condition V implies 
that y dominates x, which is impossible since majority preference is a 
tournament. So x must precede y in the order of voting. 

d. Sophisticated Voting Decisions under Amendment Procedure 

As should be clear, the mode of analysis used in the previous section can 
also be used to determine sophisticated voting decisions under other binary 
procedures, including amendment procedure. Matters do become slightly 
more complicated, but the analysis remains quite straightforward. 

First, we must construct the appropriate division tree. Under amendment 
procedure, two proposals are paired at the first vote and one or the other is 
eliminated as a possible decision. Consider again the case of five proposals, x, 
y, z, v, and w voted on in that order. As a result of the first vote, either x, z, 
v, and w (if x wins) or y, z, v, and w (if y wins) remain as possible decisions. 
As a result of subsequent votes, the sets of possible decisions are narrowed 
down in similar fashion until each is a one-element set-that is, until a 
decision is reached. Figure 6(a) shows the complete division tree for this case. 
Because under amendment procedure, m-1 votes are taken regardless of the 
results of previous votes, all paths from the initial point to an end point are of 
equal length, some decisions can be reached by several different paths, and 
the tree as a whole is considerably larger than that for successive procedure. 

We can now analyze sophisticated voting by the same logic used before. 

17 According to Fraquharson (1969), p. 62: "If voting is sincere, the later a proposal 
is voted on, the better its chance," while "if voting is sophisticated, the earlier a proposal 
is voted on, the better its chance." Proposition 7 is one way of rendering precise these 
somewhat imprecise statements. For other ways, see Miller (1975b), Niemi, et al. (1974), 
and Niemi and Bjurulf (1976). 
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This time, as we "push" the anticipated decision up the division tree, we 
compare one anticipated decision with another (rather than, as in the case of 
successive procedure, one anticipated with one actual decision). And, pre- 
cisely because there may be several different paths to the same decision, some 
votes, though manifestly between two distinct proposals, become in effect 
inconsequential choices between identical anticipated decisions. But neither 
of these matters causes difficulty and, as in the case of successive procedure, 
we can quickly identify the anticipated decision at the first vote, which is the 
sophisticated voting decision. Figure 6(b) shows a majority preference tourna- 
ment, and the corresponding anticipated decisions are underline in the 
division tree in Figure 6(a). 

PROPOSITION 8. Under amendment procedure, the sophisticated voting 
decision belongs to the Condorcet set. 

Consider any proposal x that belongs to the Condorcet set and any path in 
the division tree that leads to x as the decision. In this path, if x is not the 
anticipated decision at the final vote, then the anticipated decision at that 
vote must be some y that dominates x, in which case y belongs to the 
Condorcet set. Likewise, at the next to last vote in this path, the anticipated 
decision must be x, or y, or some proposal z that belongs to the Condorcet 
set. And so forth. Thus the anticipated decision at the initial vote, which is 
the sophisticated decision, belongs to the Condorcet set. 

While this argument was made with amendment procedure particularly in 
mind, it is clear that it does not rest on any special characteristics of the 
amendment procedure division tree and that it is equally applicable to other 
binary procedures. We can therefore generalize Proposition 8: 

PROPOSITION 8'. Under any binary procedure, the sophisticated voting 
decision belongs to the Condorcet set. 

Thus sophisticated voting under any binary procedure complies with the 
Condorcet criterion. And it follows that, if there is an undominated proposal, 
it is the sophisticated voting decision regardless of the order in which the 
proposals are voted on.18 (Proposition 8', of course, subsumes Propositions 5 
and 8.) 

If we focus specifically on the division tree for amendment procedure, we 

18 This point, for amendment procedure, was conjectured by Grofman (1969), p. 73, 
and has also been demonstrated by Niemi, et al. (1974), p. 9. 
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can analyze sophisticated voting more closely. Under amendment procedure, 
the final or (m-l)th vote always involves the last proposal in the voting order, 
say proposal z. Thus the anticipated decision at any final vote is either z or 
some proposal that dominates z. Accordingly, the anticipated decision at any 
earlier vote, and also the sophisticated decision, belongs to F(z)U{Iz 1. 

Now consider some proposal x that dominates z and any path in the 
division tree that leads to x. Since x dominates z, x is the anticipated decision 
at the final or (m-l)th vote in this path. If x is not also the anticipated 
decision at the (m-2)th vote in this path, that anticipated decision must be 
some y such that (1) y belongs to F(z) and (2) y dominates x. And then if x 
(or y) is not the anticipated decision at the (m-3)th vote in this path, that 
anticipated decision must be some v such that (1) v belongs to F(z) and (2) v 
dominates x (or y). And so forth, to the initial point in the division tree. It 
follows that z, the last proposal in the voting order, is the sophisticated 
decision only if z is undominated. And otherwise-that is, if z is dominated- 
we have the following necessary condition for proposal x, not last in the 
voting order, to be the sophisticated voting decision under amendment 
procedure: 

Condition VI. Proposal x must belong to F(z), where z is the last proposal in 
the voting order. 

We have seen that all anticipated decisions at the several final votes belong 
to F(z)UIzl. By the same argument that supports Proposition 8, the antic- 
ipated decision at the first vote, and thus the sophisticated decision, belongs 
to the minimal undominated set of proposals in the majority preference 
tournament that includes only the proposals in F(z)U .zj, which is obviously 
identical to the minimal undominated set of proposals in the tournament that 
includes only the proposals in F(z). Designate this minimal undominated set 
F*(z).19 We can therefore refine Condition VI as follows: 

Condition VI'. Proposal x must belong to F*(z), where z is the last proposal 
in the voting order. 

Thus if F*(z) includes precisely one proposal, that proposal is the sophisti- 
cated decision. Otherwise-that is, if F*(z) includes three or more proposals- 

19 That is, F*(z) is the "Condorcet set" of this smaller tournament; as such, F*(z) 
exists and is unique and includes either precisely one proposal or at least three proposals 
in a cycle. If z does not belong to V*, then clearly F*(z) = V*; otherwise F*(z) is 
contained in V*. 
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the sophisticated decision depends on which proposal in F*(z) is last in the 
voting order. Suppose that this proposal is v. By an argument similar to that 
supporting Condition VI, the sophisticated decision cannot be v and belongs 
to F(v). In conjunction with Condition VI', this means that the sophisticated 
decision belongs to the intersection F*(z)nF(v).20 And by the same argument 
that supports Proposition 8 and Condition VI', the sophisticated decision 
belongs to the minimal dominated set of proposals in the majority preference 
tournament that includes only the proposals in F*(z)nF(v). Designate this 
minimal undominated set [F*(z)nF(v)] *. Thus, if F*(z) is not a one-element 
set, we can further refine Condition VI as follows: 

Condition VI". Proposal x must belong to [F*(z)nF(v)] *, where z is the last 
proposal in the voting order and v is the proposal in F*(z) 
last in the voting order. 

Thus, if [F*(z)nF(v)] * includes precisely one proposal, that proposal is 
the sophisticated decision. Otherwise, the sophisticated decision depends on 
which proposal in [F*(z)nF(v)] * is last in the voting order. And so forth. 
But at some point we reach a one-element set,21 which identifies the 
sophisticated decision. 

We have seen that under amendment procedure, the set of possible 
sophisticated voting decisions includes no proposal not in the Condorcet set. 
But again we can ask whether this set includes all such proposals. That is, can 
any proposal in the Condorcet set be the sophisticated voting decision, given 
an appropriate order of voting? Here for the first time we reach a negative 
conclusion, which can be demonstrated by example. 

PROPOSITION 9. Under amendment procedure, a proposal may belong to 
the Condorcet set yet not be the sophisticated voting decision under any 
order of voting. 

Every proposal belonging to the Condorcet set meets Condition VI for 
some z. But such a proposal may fail to meet Condition VI' or some further 
refinement of Condition VI. Consider, for example, the majority preference 

20 Since the proposals in F*(z) are in a cycle, at least one proposal in F*(z) belongs 
to F(v) and at least one, in addition to v, does not; thus the intersection F*(z)nF(v) is a 
non-empty proper subset of F*(z). 

21 This must be true because (1) the number of proposals is finite and (2) the number 
of possible sophisticated decisions is reduced in each "cycle" of the argument (by the 
point made in the previous footnote). 
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tournament shown in Figure 7. All proposals, including y, belong to the 
Condorcet set. Proposal y dominates only z; thus by Condition VI, y can be 
the sophisticated decision only if z is voted on last. But, in this case, the 
decision belongs to F*(z)-that is, the decision is x. So y is not the sophisti- 
cated decision under any voting order. 

The finding that the set of possible sophisticated decisions under amend- 
ment procedure may exclude certain proposals in the Condorcet set raises the 
question of whether this exclusion works in some "reasonable" manner. 
Obviously this exclusion cannot be justified on the basis of the Condorcet 
criterion. But is it consistent with some other normative principle? Consider 
the following. A proposal x is Pareto-optimal if no other proposal y is 
unanimously preferred to x. Then we have: 

THE PARETO CRITERION: A proposal should be the voting decision only 
if it is Pareto-optimal. 

At first glance, it may appear that the Pareto criterion is redundant in 
conjunction with the Condorcet criterion-that is, it might seem that any 
proposal meeting the latter condition meets the former as well. But in fact 
the two criteria are independent, and the Condorcet set may include pro- 
posals that fail to be Pareto-optimal. Suppose there are four proposals, x, y, z, 
and v, and three voters: voter 1 prefers v to x to y to z, voter 2 prefers z to v 
to x to y, and voter 3 prefers x to y to z to v. These preferences generate the 
majority preference tournament considered just above and depicted in Figure 
7. Proposal x is unanimously preferred to y so, while all four proposals belong 
to the Condorcet set, only x, z, and v are Pareto-optimal. From this and 
Propositions 2, 4, and 6, it follows that sincere voting under amendment 
procedure and both sincere and sophisticated voting under successive proce- 
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dure may fail to comply with the Pareto criterion-that is, in these cases a 
voting body may adopt a proposal y even when every voter prefers some 
other proposal x to y.22 But we have just seen in the present example that 
proposal y, which fails to be Pareto-optimal, cannot be the sophisticated 
voting decision under amendment procedure. Does sophisticated voting under 
amendment procedure generally exclude non-Pareto-optimal proposals? We 
can answer this question affirmatively. 

PROPOSITION 10. Under amendment procedure, the sophisticated voting 
decision is Pareto-optimal. 

Thus sophisticated voting under amendment procedure complies with the 
Pareto criterion. This can be demonstrated readily once we establish the 
following simple lemma: 

LEMMA 3. If a proposal x is unanimously preferred to y, then x dominates 
every proposal dominated by y. 

Consider a proposal x that is unanimously preferred to (and thus domi- 
nates) y and any z dominated by y. All voters prefer x to y, and a majority 
prefer y to z; by the transitivity of individual preference, at least the same 
majority prefers x to z; thus x dominates z. 

The proposition now follows directly from Condition VI and its refine- 
ments. Suppose x is unanimously preferred to y. If y meets Condition VI, so 
does x (by Lemma 3); if y meets Condition VI', so does x (because x 
dominates y); if y meets Condition VI", so does x (by Lemma 3 and because 
x dominates y); and so forth. So when we reach the one-element set that is 
the sophisticated decision, it cannot be y.23 

Only a bit less clearly than in the case of successive procedure, sincere 
voting under amendment procedure appears to favor proposals later in the 
voting order.24 We can in fact prove the following: 

22This point has been noted by Plott (1971), p. 27n, and Fishburn(1973), pp. 96-97. 
Also see Schwartz (1975), pp. 29-30. 

23 But sophisticated voting under amendment procedure does not exclude only 
proposals in the Condorcet set that fail to be Pareto-optimal as possible decisions, for the 
sophisticated decision depends only on the majority preference tournament, and not on 
the exact distribution of preferences that underlies the tournament. And the discussion 
in footnote 7 tells us that, in the tournament shown in Figure 7, majority preference 
between x and y may "carry" by just one "vote" and certainly need not reflect 
unanimity. 

24 Cf. Black (1958), p. 40, and the references cited in footnote 17. 
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PROPOSITION 11. Under amendment procedure and a given order of 
voting, if the sincere and sophisticated voting decisions differ, the proposal 
that is the sophisticated decision precedes the proposal that is the sincere 
decision in the order of voting. 

In demonstrating this proposition and the next, it is convenient to desig- 
nate the proposals v1 , v2, . . . , vm, so that the subscripts indicate the order of 
voting. Suppose that vh is the sincere decision, which by supposition is 
different from the sophisticated decision. This implies that there is no 
undominated proposal, so F(vm), and also F*(vm), is not empty and includes 
the sophisticated decision. By Condition III, F(vh) is contained in lvi, .. 
vh-4 or, equivalently, {vh+h .l .., vm$ is contained in D(vh), which implies 
that F*(vm) is not conLained in jvh+l, , vm-1 and accordingly intersects 
{11 ... ., Vh}. It follows that if F*(vm) is a one-element set, the proposition 
is confirmed. Otherwise, one or several (but not all) of the proposals in 
F*(vm) may belong to vh+1 . . ., vmj1. Suppose that vk is the proposal in 
F*(vm) last in the voting order and that h < k, i.e., that F*(vm) intersects 
{Vh+l, * * *, Vm-1 I *It remains true that jvh+l,. . - , vm-l is contained in 
D(vh), which implies that [F*(vm)nF(vk) * is not contained in lvh+l, .... 
vm_i I and accordingly intersects {v1, . . ., vh }. And so forth. So when we 
reach the one element set that is the sophisticated decision, it must belong to 
V15 ... ., Vhf; and, if the sophisticated decision is not Vh, it must precede 

vh in the order of voting. 
One other proposition relating sincere and sophisticated voting decisions 

under amendment procedure is of interest. 

PROPOSITION 12. Under amendment procedure and a given order of 
voting, if the sincere and sophisticated voting decisions differ, the proposal 
that is the sophisticated decision dominates the proposal that is the sincere 
decision.25 

Let vh be the sophisticated decision and vk be the sincere decision. Of 
course, if the two decisions differ, (1) there is no undominated outcome (by 
Propositions 1' and 8') and (2) h < k (by Proposition 11). If h < k = m, the 
proposition follows immediately, since vh belongs to F(vm) (by Condition 
VI). 

If h < k < m, the proposition follows a bit less directly. By Condition III, 

25 This proposition does not hold for successive procedure; for an example, see Miller 
(1975b). 
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Vk belongs to F(vm) and, by Condition VI', Vh belongs to F*(vm). Thus if, 
contrary to the proposition, Vk dominates Vh, Vk also must belong to F*(vm); 
accordingly F*(vm) includes at least three proposals, Vh, Vk, and at least one 
other, and the sophisticated decision depends on which proposal in F*(vm) is 
last in the voting order. This last proposal cannot be Vh, since h < k. If this 
last proposal is Vk, then by Condition VI" Vh belongs to [F*(vm)r)F(vk)] *, 
which implies that Vh dominates Vk. So if Vh does not dominate Vk, this last 
proposal must be some vj, such that k < j and Vh belongs to [F*(vm) 
nF(vj)] *. Since k < j, Condition III implies that Vk belongs to F(vj) and of 
course, if Vk dominates Vh, Vk also belongs to F*(vm). Thus once again if, 
contrary to the proposition, Vk dominates Vh, Vk also must belong to 
[F*(Vm)nF(vj)] *; accordingly [F*(vm)nF(vj)] * includes at least three pro- 
posals, Vh, Vk, and at least one other that falls between Vk and vj in the voting 
order. And so forth. In summary, the supposition that Vk dominates Vh 
implies that Vk belongs to F*(vm), and to [F*(vm)r)F(vj)] *, etc. But since 
the number of proposals is finite, we must reach a one-element set that 
includes only the sophisticated decision Vh. Thus Vh must dominate Vk. 

e. Cooperative Voting 

Opportunities for general strategic manipulation of voting decisions have 
not been exhausted by consideration of sophisticated voting, since sophisti- 
cated (like sincere) voters make their voting choices in isolation from one 
another. But if voters can cooperate-that is, if they can communicate and 
make binding agreements (or "contracts")-further strategic opportunities are 
opened up. 

For example, suppose there are three proposals, x, y, and z, and three 
voters: voter 1 perfers x to y to z, voter 2 prefers y to z to x, and voter 3 
prefers z to x to y (thus all three proposals belong to the Condorcet set). 
Suppose further that the proposals are voted on in alphabetical order under 
amendment procedure. If voting is sincere, voters 1 and 2 vote together for x 
at the first vote, and voters 2 and 3 vote together for z at the second vote, so 
z is the sincere decision. But if voter 1 is sophisticated, he can anticipate that 
his sincere vote for x at the first vote will bring about the ultimate adoption 
of z, his lowest preference; and he can calculate that he would do better to 
join voter 2 in voting for y at the first vote and thereby achieve the adoption 
of y, his second preference. Neither of the other two voters has reason to vote 
nonsincerely, so y is the sophisticated decision. 

But if the voters can cooperate to the extent of making binding agree- 
ments, further strategic manipulation is surely possible, for voters 1 and 3 
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both prefer x to y and-since they constitute a majority-they have the 
power, acting in concert, to make x (or any other proposal) the decision (by 
voting as a bloc for x at both votes).26 But the matter does not end here, 
since-if voters 1 and 3 are about to make such an agreement-voter 2 (who 
risks getting his lowest preference) can offer voter 3 better terms: an agree- 
ment to make z the decision. And then voters 1 and 2 can do better by 
agreeing to make y the decision. 

A decisive coalition is a set of voters who, acting in concert, have the 
power to impose any decision on the voting body. A majoritarian procedure 
makes any majority coalition decisive. Clearly both procedures we have 
considered are majoritarian. Proposal x is effectively preferred to y if there is 
a decisive coalition all of whose members prefer x to y. Clearly in a 
majoritarian voting body majority preference and effective preference are 
equivalent. Thus in the example just considered, in which all three proposals 
belong to the Condorcet set, we find a cycle of effective preference: x is 
effectively preferred to y, y to z, and z to x. In general, under fully 
cooperative conditions, any tentative agreement or "contract" to make any 
proposal y the decision may be "upset" or "preempted" by another tentative 
agreement or "contract" to make some proposal x the decision, where x is ef- 
fectively preferred to y. And this process of "recontracting" continues until 
an agreement is reached to make an undominated proposal the decision 
(which agreement cannot be "upset") or until the process is broken off 
essentially arbitrarily. 

This discussion supports several conclusions. First, the cooperative voting 
decision depends on the outcome of "pre-play" negotiations; once some 
agreement is struck, voting itself is only a formality to be "played out." 

Second (but related to the first point), the cooperative voting decision 
depends only on the preferences of the voters and on the fact that the 
procedure is majoritarian27 -the procedure itself (e.g., amendment versus 
successive) and the order in which proposals are voted on are irrelevant under 
fully cooperative conditions. 

Third, the tournament we have previously analyzed in some detail repre- 
sents not only majority preference but also effective preference in the voting 
body and thus determines the course of bargaining in "pre-play" negotiations. 

26 Note that a "contract" between voters 1 and 3 is required, since otherwise 3 would 
always vote for z at the second vote and, anticipating such a "defection,"l would vote 
for y at the first vote. 

27 Or, more generally, on the power relations entailed by the procedure, majoritarian 
or otherwise. 
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By Theorem 7, there is a path from any proposal in the Condorcet set to any 
other proposal; thus "recontracting" will in due course lead into the Con- 
dorcet set (if it does not begin there) and, once in the Condorcet set, 
"recontracting" can never lead out of it. This argument supports the follow- 
ing proposition. 

PROPOSITION 13. Under any majoritarian voting procedure, the coopera- 
tive voting decision belongs to the Condorcet set. 

There is, however, no basis for specifying one such proposal rather than 
another as the cooperative decision, since the particularities of procedure and 
voting order, which determine which of the several proposals in the Con- 
dorcet set will be the sincere or sophisticated decision, are now irrelevant. 
Thus, unless there is an undominated proposal, the cooperative voting deci- 
sion is indeterminate.28 

Before concluding this section, it may be worthwhile to discuss one other 
point, since-though it has by now been adequately treated elsewhere-the 
underlying graph-theoretical considerations have not always been made ex- 
plicit. Implicitly to this point, we have been considering a voting body 
confronted with a single "issue" that can be resolved in any one of several 
ways or with a single "bill" that can be passed, perhaps with amendments, or 
defeated. We now consider a voting body confronted with several such issues 
or bills when some general agreement may be made concerning the resolution 
of several or all such matters simultaneously-that is, when "logrolling" of 
some sort is feasible.29 

We consider a voting body that must resolve n issues, X, Y, . .. , Z, where 
each issue (for example, X) is made up of several positions (for example, x1, 
x2 ... . , xm). If we retain the word "proposal" to designate the basic objects 
of decision, a proposal is now a bundle of n positions, one from each issue 
(for example, [xh,yk,... ,Zj] ). 

As before, we assume that voters have strong preference orderings over 
these proposals. But we now consider one natural restriction on voters' 
preferences over such proposals. A complement x r of issue X is a bundle of 
n-I positions, one from each other issue. Thus, (xh,Xr) is a proposal. A voter's 

28 There are ways, however, in which the set of possible cooperative decisions may be 
further pared down; for some suggestions, see Schwartz (1975), Section 8. 

29 Note that, as used here, "logrolling" implies full cooperation among voters and is 
to be distinguished from other forms of "vote trading" that involve partial but less than 
full cooperation. For a formalization of this distinction, see Miller (1977). 
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preferences are separable if, whenever he prefers (Xh,xr) to (Xk,Xr) for some 
complement xr, he also prefers (xh,xt) to (Xk,xt) for any other complement 
xt. In other words, he prefers xh to Xk regardless of how the other issues are 
resolved. (Otherwise, his preferences on issue X cannot be "separated" from 
the resolution of other issues.) Thus if all voters have separable preferences 
(as we now assume), it is possible to specify each voter's preferences, and also 
majority preference, over the positions in a single issue, as well as over the 
proposals that are now bundles of positions. 

Let us subscript the positions on issue X so the xl is majority preferred to 
x2, x2 is majority preferred to X3, and so forth; and likewise for the other 
issues. Theorem 4 assures us that such a subscripting convention is possible. 
And Theorem 7 tells us that a position in X can be labeled xl if and only if it 
belongs to the Condorcet set of positions in X; and likewise for the other 
issues. Thus we can label the positions in a way consistent with the sub- 
scripting convention and also so that (xl,yl, . .. ,z1) is the noncooperative 
voting decision whenever voting complies, on an issue-by-issue basis, with the 
Condorcet criterion (e.g., in every case we have considered except sincere 
voting under successive procedure). Now we can state the following: 

PROPOSITION 14. The proposal (x1 ,y1,... ,z1) belongs to the Condorcet 
set of proposals. 

By Theorem 7, it is sufficient to show that (x1 ,y1, . . .,z) is a source. 
Consider any other proposal, say (xh,yk, . . . ,zj). The latter is dominated by 
any other proposal that differs from it with respect to a single issue and, on 
this issue, includes the position with the next lowest subscript. For example, 
(xh,yk,.. . ,z ) is dominated by (xh,yk-1,... ,z), for the attention of all 
voters is focused on the single issue Y with respect to which the two 
proposals differ, and in this respect a majority of voters prefers the former 
(by the labeling convention). Likewise, (xh,yk-1, -- -,z) is dominated by 
(xh,yk-2,. ... ,zj), and so forth. So there is a path from (xh,y ,... ,Zj) to 
(xh,yk, ... ,zj). Repeat this argument for issue X (for example) and we have a 
path from (xl,y1, ... ,z) to (xh,yl, . . ,zj) and hence to (xh,yk, ...,zj) 
Repeat again for each remaining issue and we have a path from (x1 ,yI,. .- 

zl) to (xh,yk,... ,zz). Thus there is a path from (xl,yl,. . . ,zl) to any 
other proposal, and (xIyI, . . . zyIz) is a source.30 

It follows from the proposition that, if any proposal is undominated, it is 

30 For generally similar statements and proofs, see Kadane (1972), Miller (1975a), 
and Schwartz (1975), pp. 12-13. 
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(xl ,Y, . ... ,z1 ). Thus, provided that noncooperative voting complies with the 
Condorcet criterion, "logrolling" in the sense of full cooperation among 
voters across issues, can change the voting decision-that is, (x I,yI, . . . ,zI) is 
dominated-if and only if majority preference over proposals is cyclical, the 
Condorcet set includes several proposals, and the cooperative "logrolling" 
decision is indeterminate.31 

3. Summary and Conclusion 

The results presented in the previous section may be somewhat difficult to 
comprehend and digest. Perhaps their significance can best be highlighted by 
identifying certain patterns that they exhibit. 

At the risk of oversimplification, we may identify several different views 
of the voting process, characterized by varying levels of sophistication. 
According to the most "naive" view, voting serves to realize the "will of the 
majority" and any "reasonable" voting procedure accomplishes this goal-or 
at least does so if all members of the voting body cast "honest" (that is, 
sincere) votes. According to a more "practical" view of the voting process, 
likely to be held by parliamentary practitioners, the decision of a voting body 
may be affected by which one of several "reasonable" procedures is in use, 
and especially by the order in which proposals are voted on. This dependence 
probably comes about because preferences change and different strategic 
opportunities present themselves, as voting proceeds. But by now most 
political scientists are aware of the "paradox of voting" and of its destructive 
implications for any notion of the "will of the majority"; thus according to a 
more "sophisticated" view of the voting process, the paradox is likely to be 
intimately connected with the implications of procedure, voting order, and 
strategy for voting decisions.32 The remaining problem is, of course, to 
specify the precise nature of this connection. Such specification has been the 
principal purpose of this article. 

To summarize, we first recognize that majority preference may be cyclical 
and that an undominated proposal may not exist-that is, there may be no 
"will of the majority." We therefore focus on the Condorcet set: the minimal 
set of proposals that collectively possess the property of an undominated 
proposal. As an initial conjecture, we might guess that the set of possible 
majority voting decisions includes only proposals in the Condorcet set, and 

31 Cf. Park (1967), Oppenheimer (1972), Bernholz (1973) and (1974), Koehler 
(1975), Schwartz (1975), and Miller (1975a) and (1976). 

32 For one of the earliest investigations along these lines, see Riker (1958). 
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that the details of procedure, voting order, and strategy determine only which 
proposal in the Condorcet set is the decision (and thus are irrelevant if an 
undominated proposal, i.e., a one-element Condorcet set, exists). This con- 
jecture is confirmed in four of the five "cases" studied (Propositions 1', 5, 8, 
and 13)-the exception being sincere voting under successive procedure (Prop- 
osition 3), the one case in which the voting decision may depend on the 
distribution of preferences that underlies the majority preference tourna- 
ment. A second plausible conjecture is that the set of possible decisions under 
either procedure includes all proposals in the Condorcet set-that is, that any 
proposal in the Condorcet set can be the voting decision, given an appropriate 
order of voting. This conjecture is confirmed in the first three cases studied 
(Propositions 2, 4, and 6) but fails in the case of sophisticated voting under 
amendment procedure (Proposition 9).33 

Common sense suggests that voting processes may be undermined if voters 
do not vote "honestly" but rather engage in "devious" strategic manipula- 
tions; thus common sense suggests that such machinations should be con- 
demned. But condemnation is unlikely to be effective, and it is apparently 
impossible to devise any proper voting procedure that is immune to strategic 
manipulation34; thus it is significant that our analysis shows that the com- 
mon-sense belief must be modified-at least when all voters are equally 
"devious" or "sophisticated." When some voters engage in strategic manipula- 
tions and others do not, no doubt perverse decisions can result-beneficial to 
the "devious" voters, harmful to some others, and perhaps harmful in some 
sense (for example, according to the Condorcet criterion) to "social welfare" 
as well. But we have seen that if all voters are equally "devious" or "sophisti- 
cated," the consequences of strategic manipulation are if anything beneficial. 

Specifically, under successive procedure, sophisticated voting complies 
with the Condorcet criterion (Proposition 5), while sincere voting does not 
(Proposition 3). Put otherwise, the set of possible sophisticated decisions is 
less inclusive than the set of possible sincere decisions, and this paring down is 
accomplished in accordance with the Condorcet criterion. 

Under amendment procedure, sincere voting already complies with the 
Condorcet criterion (Proposition 1'), but sophisticated voting pares down the 
set of possible decisions still further and accomplishes this in accordance with 
the Pareto criterion (Proposition 10). Moreover, under amendment procedure 

3 The matter remains somewhat unclear in the case of cooperative voting; recall 
footnote 28. 

3 See in particular Zeckhauser (1973), Gibbard (1973), and Satterthwaite (1975). 
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and any given voting order, if the sincere and sophisticated decisions differ, a 
majority of voters prefers the latter to the former (Proposition 12).35 

Finally, if full strategic cooperation is possible, the set of possible voting 
decisions is pared down at least to the Condorcet set under any majoritarian 
voting procedure whatsoever (Proposition 13)-while noncooperative voting 
under many procedures may be far more arbitrary. 

It also appears that, under amendment and successive procedure, the 
sophisticated voting decision is less order-dependent than the sincere decision. 
And of course under any procedure the cooperative voting decision is entirely 
independent of order. 

In several significant respects, therefore, this analysis has modified the 
common-sense condemnation of strategic voting. And the summary just 
presented also indicates that, whether voting is sincere or sophisticated, 
amendment procedure is superior to successive procedure. Finally, the two 
remaining results (Propositions 7 and 11) are consistent with previous claims 
regarding the effects of voting order under sincere and sophisticated voting. 

Having summarized the principal substantive results in this article, I will 
conclude on the methodological point. Possibly the graph-theoretical frame- 
work of this article will strike some readers as so much window-dressing- 
elegant but unnecessary. Several of the results can be (and have been) 
obtained more easily and directly by other methods. But I can assure the 
skeptical reader that other results presented here cannot be so readily ob- 
tained-nor so coherently integrated-without the aid of the logic provided by 
graph theory. I hope, therefore, that this article, as well as adding to the stock 
of voting theory results, may serve also to demonstrate more generally the 
utility of graph-theoretical reasoning in political inquiry. 

Manuscript submitted 31 December 1975 
Final manuscript received 12 August 1976 
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