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Research on the link between intelligence and economic

decision making is a recent development in the more general

attempt to introduce theories of individual differences and

personality traits into the analysis of economic behavior. We lay

down here what we know from behavioral studies, from

imaging studies, both functional and anatomical, and insights

from decision theory and game theory. All the results point to a

correlation and perhaps a deeper link between cognition and

decision making, both in single-player and in strategic

environments. We see several pieces of a puzzle, and provide

some suggestions on how future research will discover the

hidden image.
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Introduction
An operational way of defining intelligence [1] begins

with the empirical observation that test scores on cogni-

tive tasks are positively correlated. If one then looks for an

explanation of this regularity through exploratory factor

analysis, one finds that scores in specific tests can be

explained in a satisfactory way by a general factor (which

Spearman called g) and an independent, task-specific

factor. These conclusions have long been controversial,

but they seem to be now widely accepted [2]. We will

focus here on g (and call it intelligence) as the measurable

individual characteristic of performance in general cogni-

tive processes.

Economic decision making is the selection of one from a

feasible set of options, each one having a value to the

decision maker, and involves the processing of informa-

tion on several relevant variables describing the options.

This process is already complex in the case of an indi-

vidual acting in isolation, as it requires an understanding

of the options offered, whether at the supermarket or in
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the laboratory, an introspective evaluation of the prospec-

tive pleasure derived from each, perhaps on the basis of

previous experiences, and the risk or time delay involved

in the case of monetary payments. Information processing

is even more complex in decision making in a strategic

environment, where the consequences depends both on

the choice made by the individual and the choices made

by others. We will examine here the relation between

intelligence and economic decision making; we ignore

the obviously important, related but different issue of

intelligence and economic outcomes (which is discussed

instead for instance in [3–7]).

Intelligence and the method of choice
It seems natural to consider decision making as a special

cognitive task, provide a definition of performance in this

case, and expect (because of the g factor) this performance

to be correlated with that exhibited in other tasks. The

definition of performance in economic choices should not

bind the individual to a particular preference over

options, but should only constrain the method of choice.

For example, if a, b, and c are lotteries with monetary

payments, the choice between a and b and that between b
and c should be entirely a matter of taste, and have no

bearing on the general cognitive ability of the person who

is doing the choosing. However, a reasonable consistency

requirement (called transitivity) in choice is that if you

prefer option a to b, and b to c, then you should not prefer

c to a. That this is the case has been experimentally

verified in recent years [8–12]: individuals with higher

scores in IQ tests (e.g. Raven matrices) are more likely to

be consistent. Similarly, individuals with higher intelli-

gence should be less sensitive to irrelevant details in the

presentation of the options (framing).

A similar correlation might also seem reasonable in stra-

tegic environments, although in this case the restrictions

on behavior are substantially weaker. This is a conse-

quence of the fact that, since the outcome of an action

depends on the actions of others, and prediction of what

the other will do depends on what they think you will do,

different actions might be equally reasonable depending

on appropriate beliefs about what the others will do. A

solution concept (that is, a theory that selects some joint

behavior of players among all the possible ones) exists

[13,14] that only requires an action to be justifiable for

some belief on what the others are going to do. This is the

case if the action is the best choice given some belief

about the choice of others, provided those beliefs are in

turn a best choice given some belief about the choice of

others, and so on. Even if one adopts this criterion (called

rationalizability, which is weaker than the usual Nash
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equilibrium concept), some restrictions on behavior fol-

low. For example, no action b should be taken that gives a

worse outcome than a no matter what the others are doing

(that is, no rational player should use a dominated action).

There is still no systematic experimental test for the

relation between intelligence and some appropriate defi-

nition of performance in choice, or rationalizability in

games, although this is clearly an interesting field for

future research.

A substantially more interesting line of research, however,

is motivated by the finding that the role of intelligence

goes well beyond the positive correlation between per-

formance in choice and in cognitive tasks; instead, it

discovers a relation between preferences and intelligence.

In this survey we will focus on this second aspect of the

relation between intelligence and what preferences are,

rather than how they are implemented in choices.

Intelligence and preferences
A famous example of the relation between intelligence

and preferences is in the realm of choice among rewards

delivered at different points in time. In psychology, this

has been known since Mischel’s [15] marshmallow ex-

periment: children’s ability to postpone eating a marsh-

mallow now, in exchange for an additional one later, was

found to be correlated with performance in SAT tests, and

in general with educational and economic success later in

life. Some recent research has shown that a similar corre-

lation holds for other domains of choice, in particular

choice under risk and uncertainty. For example, we have

argued elsewhere that there is no reason why we should

consider the choice of a fifty–fifty chance of 100 dollars

over 40 dollars more reasonable than the opposite. Nev-

ertheless, just as with preferences over dated rewards, the

pattern of choices under risk exhibits a correlation with

intelligence. This relation, discussed in [8–12] cited

earlier, is complex, but in general a greater willingness

to risk is associated with higher intelligence.

A correlation between intelligence and behavior is also

found in strategic behavior. This relation has probably

deep roots: the social intelligence hypothesis [16–20]

suggests that the richness of the social interaction in

humans demands the development of flexible cognitive

strategies, as opposed to adaptive rules of thumb. A

natural way to predict how behavior in a strategic envi-

ronment correlates with intelligence is to assume that

higher intelligence will bring individuals closer to the

behavior predicted by game-theoretic equilibrium con-

cepts, based on the assumption of rationality of the

players. When the game-theoretic prediction is unique,

the restriction is powerful. This prediction has been

experimentally tested, and has found some support

[21–24]. However, there are some interesting exceptions

to this rule when players do not have opposing interests,

and there are potential gains from cooperation. An
www.sciencedirect.com 
important example is provided by the sequential two-

player trust game: the first mover has to choose an invest-

ment, paid for out of his own funds; the investment gives

a return which is paid to the second player, who is

informed of the amount paid by the first player and

has to decide how much to give to the first out of his

new total wealth. A rational second player who is only

interested in his payoffs will transfer nothing back, and

the first player, anticipating that his investment will give

no benefit to him, will invest nothing. The assumption

suggested earlier that higher intelligence is associated

with more rational behavior would lead to the prediction

that players with higher intelligence will transfer less.

Instead, the opposite holds in experimental tests [9]:

higher intelligence players transfer more as first mover

and are more reciprocal as second mover. Similar results

hold for the one-shot Prisoner’s Dilemma [25].

When the game-theoretic prediction is not unique strategic

analysis provides little guidance to the relation between

intelligence and behavior. A lack of a unique prediction is

the rule in repeated games, where two players play the same

simultaneous move game for many rounds, for example the

Prisoner’s Dilemma [26,27�]. In experimental setups, the

probability that the repeated encounters come to an end in

each round is decided by a random device; the higher the

continuation probability, the higher a consideration of

future rounds will weigh on the current decision, and make

cooperation today to induce cooperation tomorrow more

appealing. Note that the set of possible equilibria is still

very large, and since intelligence is not explicitly consid-

ered in game theory, the theory is silent on the relation

between intelligence and behavior. There are, however,

interesting regularities. For instance, (Proto E, Rustichini

A, Sofianos A, under review) if players are allocated to two

groups of high and low IQ score, then the cooperation rate

is very similar across groups in the early stages but diverges

substantially over the experimental session, with high IQ

score players reaching a cooperation level close to 100%,

and low IQ score ones drifting to lower cooperation rates.

Model-free learning and intelligence
Research on neural correlates into the way intelligence

modulates information processing on rewards has so far

been confined to model-free learning theories. These theo-

ries view learning as adjusting the assessment of the value

of an action in proportion to the difference (called predic-
tion error) between the reward obtained and the expecta-

tion of the reward according to an earlier assessment. This

adjustment does not require an understanding or a model-

ing of the structure of the transition probability among

states of nature that affect rewards: this transition is

instead explicitly introduced in model-based theories, which

assume that the individuals learn what the transition is.

Even this simple class of models provides some insight

into the role of intelligence in learning [28,29]. In [30�]
Current Opinion in Behavioral Sciences 2015, 5:32–36
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the authors find a positive correlation between the pre-

diction error in the ventral striatum (VS) and fluid intelli-

gence. A related result, but in the right dorso-Lateral

Prefrontal Cortex (DLPFC) and the dorsal Anterior Cin-

gulate Cortex (dACC) is found in [31�]. A different result

(a negative correlation between the direction of the

prediction error and IQ) is found in [32�]. The three

results may be considered to be broadly consistent if

one takes into account a crucial difference in the experi-

mental designs. In [32�], the subjects did not know the

process governing rewards and they had to learn it. An

analysis of their behavior shows that subjects with higher

IQ scores are likely to learn faster the fact that they are

facing an approximately equal probability of reward in-

dependently of their choice. Thus, the common feature of

these studies is that in model-free learning, higher intel-

ligence subjects are faster at learning the relevant prop-

erties of the environment.

Caudate volume and intelligence
These results indicate a link between the learning prop-

erties of the process delivering rewards and intelligence.

Several recent studies, some in the clinical literature,

have investigated a possible link between individual

differences in caudate volume and intelligence [33]. A

correlation between caudate volume and IQ score has

been found in 105 preadolescent prematurely born chil-

dren [34]. Similarly, a correlation between Verbal IQ (but

not Performance IQ) and caudate volume has been found

in 76 adolescents born prematurely [35�]. A study inves-

tigating the link between respiratory fitness and cognitive

decline found that caudate volume mediated the associa-

tion between cardiopulmonary fitness and cognitive flex-

ibility in 179 elderly adults [36]. An association between

intelligence and the shape of right hemisphere striatal

structures (including the caudate, putamen, nucleus

accumbens, and thalamus) was found in a sample of

93 healthy adults [37]. A positive association between

intelligence and caudate volume has also been found in

three large independent samples of healthy adults (total

N = 517) [38]; the relation holds for bilateral caudate, after

controlling for age, sex and total brain volume, and it is

strong for Verbal IQ but weaker for Performance IQ. The

effect size is similar in the three subsamples. Instead, no

correlation holds with the volume of other subcortical

structures.

Learning and risk taking
The findings we reported, linking intelligence and struc-

tural properties of anatomical regions of the brain are

seemingly robust, and have been replicated in different

and independent samples. A very interesting direction of

research now opens, which is specific to our topic, namely

the link between intelligence and properties of economic

decision making. Since the regions found to be related to

intelligence are also linked to reward processing, a natural

first question is whether these results provide an insight
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into the link between intelligence and attitude to risk

identified in earlier studies? Building on some simple

learning models [39,40] some modeling research illus-

trates how such a link is possible [41–43].

For example [43], models experimentation in choice as

follows: suppose someone is repeatedly choosing be-

tween a risky reward and a safe one. From the outcomes

observed he has to make an estimate of the value of the

risky estimate and has to decide in every period which of

the two options to sample. The model makes two simple

assumptions. The first is that the current estimate when

the risky choice is taken is a weighted average with

constant coefficients of the past estimates and the cur-

rently observed reward; if the choice is not risky, then the

current estimate is set equal to previous. Second, the

probability of choosing the risky option is a logistic

function of its estimated value. If the expected value

of the risky choice is equal to the safe amount, then the

expectation of the choice of the risky option is less than

fifty per cent (so the decision maker behaves as risk

averse). The reason for this is a tendency to avoid sam-

pling when the estimate is low. Thus a negative outcome

creates a trap in which the decision maker chooses not to

learn the true value. The model is very simple, and the

adaptive learning rule may seem arbitrary, but it clearly

shows how risk attitudes can be produced by learning.

Research in this direction can provide insights linking the

behavioral, brain imaging and anatomical results we have

seen.

Model-free learning theories are useful, but probably too

simple to give us a full understanding of the role of

intelligence in decision making and learning. Research

is currently under way to evaluate the role of intelligence

in a richer class, called model-based theories. These

theories model the learning environment as a state vari-

able and a transition among states that may depend on the

actions of subjects. A model-based theory makes the state

and the transition an explicit component of the concep-

tual structure used by the decision maker, who may learn

about parameters describing the transition as well as the

state. Two subclasses of models-based theories are par-

ticularly suitable to investigate the role of intelligence in

learning [44]; they differ with respect to what is known

about the state, which may be observable [45] or hidden

[46]. The latter group seems most relevant to studying the

role of intelligence in economic decision making.

How intelligence affects economic decision
making: future research
We have reviewed several findings providing a link be-

tween intelligence and economic, including strategic,

decision making. Economic decision making is a special

task, distinct from the typical cognitive task, because in

economic decision making there is no wrong or correct

answer. So the research we surveyed is an attempt to
www.sciencedirect.com
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explain what is specific to this realm of decision making,

namely the features of choice pattern, such as attitude to

risk or patience in choice over timed rewards, rather than

performance, such as the consistency of choice.

The research should now, we think, proceed to look for a

unified an understanding of the reasons for the existence

of this link. A first step in understanding how intelligence

affects economic decision making should probably pro-

ceed by first establishing a benchmark for optimal choice

considered as information processing. A subject observes

a sequence of signals (for example rewards obtained in

the past) providing information on payoff-relevant states,

which may be only partially observable. The subject

formulates a belief on the state and chooses actions taking

into account the effect on rewards as well as the informa-

tional value of the signal he gets. One can formulate the

benchmark model as a dynamic programming problem

taking the set of beliefs as state space, and use Bayesian

updating, or (in a method closer to model-based theories)

adjust one’s estimates on the basis of the prediction error.

The effectiveness of information processing may be

affected by intelligence in several ways: by the quality

of the signal observed, by the amount of information

retained in working memory, or finally by the quality

of inference (for example the noise in the updating

processing. The cost function may be taken to model

intelligence: a higher cost associated with lower cognitive

skill scores. Once this benchmark is established, realistic

models of the way in which intelligence affects economic

decision making will be possible, including and under-

standing of the way in which different components of the

process we outlined (including working memory and

cognitive control) enter into the choice process.
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representation of reward magnitude — an activation
likelihood estimation meta-analysis of neuroimaging studies
of passive reward expectancy and outcome processing.
Neuropsychologia 2012, 50:1252-1266.
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