
Breaking Cycles in Noisy Hierarchies∗

Jiankai Sun
�e Ohio State University

sun.1306@osu.edu

Deepak Ajwani
Nokia Bell Labs, Ireland

deepak.ajwani@nokia-bell-labs.com

Patrick K. Nicholson
Nokia Bell Labs, Ireland

pat.nicholson@nokia-bell-labs.com

Alessandra Sala
Nokia Bell Labs, Ireland

alessandra.sala@nokia-bell-labs.com

Srinivasan Parthasarathy
�e Ohio State University
srini@cse.ohio-state.edu

ABSTRACT

Taxonomy graphs that capture hyponymy or meronymy relation-

ships through directed edges are expected to be acyclic. However,

in practice, they may have thousands of cycles, as they are o�en

created in a crowd-sourced way. Since these cycles represent logical

fallacies, they need to be removed for many web applications. In

this paper, we address the problem of breaking cycles while preserv-

ing the logical structure (hierarchy) of a directed graph as much as

possible. Existing approaches for this problem either need manual

intervention or use heuristics that can critically alter the taxonomy

structure. In contrast, our approach infers graph hierarchy using

a range of features, including a Bayesian skill rating system and

a social agony metric. We also devise several strategies to lever-

age the inferred hierarchy for removing a small subset of edges to

make the graph acyclic. Extensive experiments demonstrate the

e�ectiveness of our approach.

CCS CONCEPTS

•�eory of computation→Network �ows; •Computingmethod-

ologies→ Ontology engineering; •Information systems→ Data

cleaning;

KEYWORDS

Directed Acyclic Graph, Graph Hierarchy, TrueSkill, Social Agony,

Cycle Edges

ACM Reference format:

Jiankai Sun, DeepakAjwani, Patrick K. Nicholson, Alessandra Sala, and Srini-

vasan Parthasarathy. 2017. Breaking Cycles in Noisy Hierarchies. In Pro-

ceedings of WebSci’17, June 25-28, 2017, Troy, NY, USA., , 10 pages.

DOI: h�p://dx.doi.org/10.1145/3091478.3091495

1 INTRODUCTION

A large number of applications in information science, in �elds

such as AI, semantic web, biomedical informatics, library science

∗�is Work was conducted while the �rst author was doing internship at Nokia Bell
Labs, Ireland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

WebSci’17, June 25-28, 2017, Troy, NY, USA.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4896-6/17/06. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3091478.3091495

and information architecture, rely on ontological knowledge such

as taxonomies and meronomies. Taxonomies capture generaliza-

tion/speci�cation of semantic concepts and categories andmeronomies

capture “has a” and “is a part of” relationship. �us, the taxonomy

and meronomy graphs (as well as graphs representing many other

ontological relationships) should ideally be acyclic as cycles repre-

sent logical contradictions.

However, many large ontological knowledge bases are created

either in (i) crowd-sourced way (e.g., Wikipedia categories [39])

or (ii) using automated text analytics tools (e.g, Yago [13, 31]).

�e creation process o�en results in inconsistencies and errors.

As a result, the directed graphs capturing these ontological rela-

tions, can have a large number of cycles. For instance, the popular

skos:broader category1 is not guaranteed to be transitive and ir-

re�exive and, as a result, it has various cycles that can “represent a

potential problem for many web applications” 2. In fact, there exists

a body of work [5, 9, 20, 24, 26, 29, 33, 34, 38, 42] that has identi�ed

and recognized the presence of cycles in the hierarchical relations

as one of the main problems for many web applications dealing

with ontologies, such as United Medical Language System (UMLS)

Metathesaurus graph and DBpedia taxonomy graph. For example,

the unsupervised learning approach proposed by Fossati et al. [9],

to automatically derive a taxonomy for a DBpedia entity from a

prominent subset of the Wikipedia category graph, requires that

the Wikipedia category graph is a directed acyclic graph (DAG),

which can ensure a strict hierarchy. To support these web applica-

tions, there is a need for a principled technique to reduce a directed

graph modeling a hierarchical relationship into a DAG, which only

includes acyclic relationships.

In addition to removing logical contradictions, a DAG with strict

hierarchy, can also bene�t many applications to be computationally

more e�cient. �is is because a DAG supports faster traversals

(e.g., for computing descendants and transitive closure) compared

to general directed graphs.

�e problem of reducing graphs modeling hierarchical relations

into DAGs is also relevant in many other domains. For instance, in

synchronous data�ow (SDF) scheduling (an important problem in

design automation for communication and digital signal processing

systems [14, 15]), the existence of cycles in SDF graphs prevents

or greatly restricts applications of many useful optimization tech-

niques that are available for acyclic SDF graphs, because cyclic data

dependences can cause deadlocks when scheduling tasks.

In this paper, we propose techniques to remove the cycles while

preserving the logical structure (hierarchy) of a directed graph as

1h�ps://www.w3.org/2009/08/skos-reference/skos.html
2h�ps://www.w3.org/TR/skos-reference/#L2484

a polynomial-time approximation scheme (PTAS) [17]. Heuristic

approaches are proposed to gradually build the feedback edge set

by always removing the edge that breaks the most of the remaining

simple cycles(e.g., [21]).

To avoid enumerating all simple cycles of a graph, there exists

a greedy local heuristic method that only uses local information

to make greedy choices [6, 7]. Score functions are de�ned based

on local information (in- and out-degree of nodes). Such score

functions are de�ned as: score (i) = |din
i
− dout

i
| or score (i) =

max (
d
in

i

d
out

i

,
d
out

i

d
in

i

), where score (i) is the score of a node i (a higher

score means node i is more asymmetric regarding to its in- and out-

degrees), and din
i

(resp. dout
i

) are the in-degree (resp. out-degree)

of node i . �e node with the highest score is selected, then all of

its in- or out-edges are removed, whichever edge set is of smaller

cardinality.

MFAS heuristics (e.g., [6, 7, 21, 27, 35]) do not o�er any guaran-

tees on the number of edges removed and in the worst case, the

gap between the heuristic solution and the optimal solution can be

extremely large. Furthermore, even if an exact algorithm (e.g., [2])

can be used, there is no evidence to suggest that it preserves the

logical hierarchy structure or that minimizing the edges to remove

is the correct objective to optimize for cleaning the ontologies with

hierarchical relations. Take Figure 3 for example, the edge (Program-

ming Language,Computer Science) will be removed according to the

above greedy local heuristic method. However, edges (Computer

Science, Python) and (Computer Science, Java) should be removed

to maintain the correctness of this graph’s logical structure.

Figure 3: Minimum Feedback Arc Set Toy Example

2.3 Domain-speci�c Algorithms

Many other algorithms have been proposed for the problem of

eliminating cycles for speci�c domains. However, these techniques

rely on manual intervention and/or additional information that is

o�en not available.

For UMLS Metathesaurus graph, solutions [24, 26] have been

proposed for eliminating inappropriate edges causing circular hi-

erarchical relations. �e algorithm proposed by Bodenreider [26]

is relatively complex and for complex cycles, it requires manual

intervention [24] by domain experts, which is not scalable. �e

technique by Mougin and Bodenreider [24] uses a set of heuristics

and rules to identify and eliminate all cycles from the UMLS graph.

For example, criteria redundancy (i.e. the number of sources as-

serting each relation) and criteria con�dence can be exploited to

determine relations. However, this information about number and

con�dence of sources is not easily available for many ontological

knowledge bases.

For synchronous data �ow graphs, Bha�acharyya et al. and

Hsu et al. [3, 14, 15] proposed the loose interdependence algorithm

framework (LIAF) to decompose and break cycles. �is framework

relies on a very speci�c property of SDF graphs, namely, that for

each strongly connected component (SCC)3 of the SDF graph, there

exists a set of edges with su�cient delays (an edge in an SDF

graph is associated with a delay that can also be interpreted as the

number of initial tokens) whose removal reduces the number of

nodes in the SCC of the remaining graph. In fact, the algorithm

recursively eliminates such edges to get rid of all cycles in the

input SDF graphs (removed edges become inter-iteration edges).

However, in our scenario of large ontological knowledge graphs, no

such delay measure is known to exist and there is no corresponding

notion of iterations, so these algorithms are not applicable.

Some approaches [20] transform the SCCs in the hierarchical

relationships (broader/narrower, whole/part, generic/speci�c, in-

stance of) into related relationship between the concepts. While

this may be su�cient for some applications, many applications will

end up simply ignoring the related relationship edges and the large

number of corresponding direct and implied relations, leading to

inaccurate results.

3 OUR APPROACH

In this section, we propose graph hierarchy based strategies to

break cycles from a directed graph, while preserving the under-

lying hierarchy of the relations as much as possible. Consider a

ranking function f that assigns a ranking score to each node in

the graph. A higher ranking score implies that the corresponding

node is higher up (e.g., more general) in the hierarchy. Given such

a ranking, the edges which violate the hierarchy (i.e., edges from a

higher/general group to a lower/speci�c group) are potential candi-

dates for removal. �us in our approach, there are two sub-tasks

involved:

• Inferring graph hierarchy (or �nding a ranking function)

• Proposing strategies to select violation edges as candidates

for removal

3.1 Inferring Graph Hierarchy

One way to infer graph hierarchy is through PageRank [28]. �e

relative importance inferred by PageRank is considered as corre-

sponding nodes’ ranking score in the graph hierarchy. However,

nodes’ ranking scores in graph hierarchy are not always consistent

with their PageRank values even in a DAG. Take Figure 4 as an

example, node C has the highest PageRank value, but it is neither

the highest, nor the lowest node in the actual graph hierarchy.

3.1.1 TrueSkill. TrueSkill [12] is a Bayesian skill rating system

which is designed to calculate the relative skill of players from the

set of generated competitions in multi-player games. Liu et al. [22,

23] introduced a two-player and no-draw version of TrueSkill to

estimate question di�culty level in community question answering

3A directed graph is strongly connected if there is a path between all pairs of vertices.
An SCC of a directed graph is a maximal strongly connected subgraph. SCCs can be
detected by the work of Nuutila et al. [25].

a DAG. It is easy to notice that processes for each SCC are inde-

pendent from each other, and they can be parallelized to improve

e�ciency.

Since each node’s hierarchical ranking score can be inferred by

TrueSkill and Social Agony, we have 6 combinations to remove

cycle edges:

• TS G: Use TrueSkill (TS) to infer the graph hierarchy, and

strategy Greedy is applied to remove cycle edges.

• TS B: Same as TS G, except strategy Backward is applied

to remove cycle edges.

• TS F: Same as TS G, except strategy Forward is applied to

remove cycle edges.

• SA G: Same as TS G, except use Social Agony (SA) to infer

the graph hierarchy.

• SA B: Same as TS B, except use SA to infer graph hierarchy.

• SA F: Same as TS F, except use SA to infer graph hierarchy.

We use a voting schema (H Voting) to ensemble the above 6 ap-

proaches for breaking cycles in a graph. For each cycle edge e , its

voting score is
∑
m (Im (e)), wherem ∈ {TS G,TS F ,TS B, SA G, SA F ,

SA B} and Im (·) is an indicator function. If edge e is removed by

methodm, Im (e) = 1, otherwise Im (e) = 0. �us, H Voting selects

the edge with the highest voting score for removal.

4 EXPERIMENTS

4.1 Datasets

In this section we describe the datasets used in our experiments.

We experiment not only with real-world datasets but also synthetic

(random) graphs in order to demonstrate the robustness of our

approach.

We use the following real-world graphs:

• arXiv: �e Arxiv HEP-PH citation graph4 is extracted from

arXiv5 and covers all citations from Jan. 1993 to Arpril 2003.

If a paper i cites paper j , the graph contains a directed edge

from i to j.

• EU Email: �e EU email community network graph6 is

generated using email data from a large European research

institution. If a node i sent at least one message to j, then

there is a directed edge from i to j.

• Web Google: �e Google web graph7 is generated by repre-

senting web pages as nodes and hyperlinks between web

pages as directed edges.

• Wiki Vote/Wiki Talk: Wikipedia vote/talk network graph8

contains all the Wikipedia voting/talk data from the incep-

tion of Wikipedia till Jan. 2008. If user i voted/edited the

talk page on/of user j, there is a directed edge from i to j

in the graph.

• Stackover�ow Q2A: �e Stack Over�ow network9 contains

interactions between users and questions on the stack ex-

change web site Stack Over�ow. If user j has answered

4h�ps://snap.stanford.edu/data/cit-HepPh.html
5h�ps://arxiv.org/
6h�ps://snap.stanford.edu/data/email-EuAll.html
7h�ps://snap.stanford.edu/data/web-Google.html
8h�ps://snap.stanford.edu/data/wiki-Vote.html and
h�ps://snap.stanford.edu/data/wiki-Talk.html
9h�ps://snap.stanford.edu/data/sx-stackover�ow.html

user i’s question, there is a directed edge from i to j in the

Stackover�ow Q2A graph.

• DBP 2014, DBP 2015, DBP 2016: �ese three category graphs

from DBpedia10 are extracted from relationships of cate-

gories published in 2014, Oct. 2015, and April. 2016 re-

spectively. If i is a sub-category of category j, there is a

directed edge from i to j in corresponding category graph.

In addition, we also consider two graph datasets that have no

cycle edges: a patent citation graph (Cit-Patents)11 and the NCBI

taxonomy graph (NCBI-Taxo) 12. �e Cit-Patent data set spans from

January 1, 1963 to December 30, 1999, and includes all the utility

patents granted during that period. In the Cit-Patent graph, if a

patent i cites patent j, there is a directed edge from i to j. In NCBI-

Taxo graph, there is a directed edge from more speci�c nodes to

more general nodes. �ere is a self loop for the root node. Hence

the out-degree of each node in NCBI-Taxo graph is 1.

Condensation graphs: For graphs containing cycles such as arXiv,

EU Email, etc., we use their corresponding condensation graphs

in our experiments. �e condensation graph CG of graph G is a

cycle-free graph that is generated by contracting each SCC in G to

a single node. Statistics of these condensation graphs are shown in

Table 1.

Table 1: Statistics of Datasets

Dataset # nodes # edges

Cit-Patents 3,774,768 16,518,948

NCBI-Taxo 1,553,020 1,553,019

arXiv 20,085 130,469

EU-Email 230,795 223,004

Web Google 371,603 519,304

Wiki Vote 5,816 19,540

Gnutella 48,438 55,349

Wiki Talk 2,394,385 5,021,410

Stackover�ow Q2A 2,021,984 3,345,760

DBP 2014 5,502,627 20,854,028

DBP 2015 6,092,789 24,173,109

DBP 2016 6,263,925 25,211,684

Random Graphs: To provide evidence that our techniques are

not merely exploiting structural properties of these particular real-

world graphs, we also generated several random DAGs for our

experiments. �is follows the DAG(n,M) model from the random

graph literature (see e.g., [1]). �e following procedure is applied

to generate a random DAG RG = (N ,M):

• Generate |N | nodes with node ids in the range [1, |N |].

• Randomly select |M | pairs of nodes as edges in M . For

each pair {u,v}, add (u,v) toM if id (u) < id (v) and (v,u)

otherwise.

• Randomly permute the node ids for each node in N , so

that node ids do not imply anything about the order infor-

mation.

10h�p://downloads.dbpedia.org/
11h�ps://snap.stanford.edu/data/cit-Patents.html
12h�ps://www.ncbi.nlm.nih.gov/taxonomy

4.2 Experimental Setup

Since there are few large real taxonomy graphs with ground truth

publicly available, we consider the following set up to evaluate the

di�erent approaches: We consider a large real or synthetic DAG

and introduce cycles in it by inserting edges that violate the partial

ordering induced by the DAG. �e goal for the various approaches

is to identify the set of edges that were inserted. In particular, we

evaluate the performance of di�erent approaches by considering

the set of newly inserted cycle-introducing edges as the ground

truth and computing precision, recall, and F1-score with respect to

this ground truth.

To introduce cycles, we repeatedly perform the following step:

randomly select a node pair (u,v) and if u can reach v in the input

DAG, then we insert the edge (v,u) into the cycle-introducing edge

set T . In some experiments, we also constrain the shortest path

length of u → v to be no larger than a threshold d . Once we have

the required number of edges in T , we insert these edges into the

input DAG. Hence, edges in T are labeled as noisy edges which can

be used for evaluation.

Baselines to Remove Cycle Edges:

�ree baseline approaches are used in our experiments:

• DFS: use DFS to detect and remove back edges

• PR: use PageRank to infer graph hierarchy, and strategy

Greedy is applied to break cycles.

• MFAS: a local greedy implementation of minimum feedback

arc set problem, as described in section 2.

In addition to the precision, recall and F1-score obtained using

the above setup, we also consider auxiliary measures such as the

number of edges removed to make the graph acyclic.

4.3 Experimental Results

First, we consider the general case where there are no constraints

on the length (d) of the cycle. Figure 5 presents our results on

random DAGs (with RG (n,m) representing a random DAG with n

nodes andm edges, where 1K is used as shorthand for 1000). We

inserted 150013 random edges into these graphs to create cycles14,

and the goal is to identify and remove these edges in order to break

the cycles. We observe that the di�erent approaches achieve very

di�erent precision, recall and overall F1 score. Our proposed voting

approach, H Voting, achieves the best F1 score across the entire

range of di�erent random DAGs. Note that our approach is much

more accurate for these graphs than the traditional heuristics based

on DFS and MFAS on random DAGs.

Next, we consider the real-world graphs, and, as before, insert

1, 500 random edges to create cycles. As shown in Figure 6, there is

no consistent winning strategy. While most approaches based on

TrueSkill and Social agony achieve fairly similar performance on

Cit-Patents, TS-B achieves the best F1 score on the tree-like NCBI

taxonomy graph15. We note that H Voting achieves the best F1

score (around 0.9) on the arXiv condensation graph and is among

the top-3 over all se�ings, both in terms of precision and F1. In

13Wehave tested the performance on a varying number of edges as shown in Section 4.5.
In the interest of space, we report only the performance for 1500 extra edges. Other
se�ings yield similar results.
14�e maximum number of big SCCs generated is 1500
15A�er removal of the only self-loop edge.

contrast, the F1 score of DFS based heuristic is 0.12 for Cit-Patents,

0.17 for NCBI-Taxo and 0.02 for arXiv.

4.4 Number of Edges to be Removed

In addition to precision, recall and F1 score, another important

performance measure is the number of edges removed. Although

there is no empirical evidence that removing fewer edges causes

less damage to the logical hierarchy of the ontological relation, we

still want as few edges to be removed as possible. In particular, this

is the measure that is directly optimized by the minimum feedback

arc set (MFAS) problem.

For brevity, we only report the number of edges that are removed

from graphs RG (3K , 15K), RG (30K , 150K), and RG (10K , 150K) in

Table 2. In these cases, 1500 random edges were inserted to intro-

duce cycles. We note that TS G, SA G, and H Voting remove fewer

edges compared to other approaches. Furthermore, the number of

removed edges is close to 1500, which is the number of edges in the

ground truth. Interestingly, the number of edges removed by TS G,

SA G, and H Voting is considerably smaller than by the greedy

heuristic for MFAS, which is directly minimizing the number of

removed edges. �e results in other se�ings are similar. �e corre-

sponding precision, recall and F1 scores are shown in Figure 5, and

indicate that strategies that remove fewer edges also have higher

F1 scores.

Table 2: # edges to be removed

edges to be removed RG(3K,15K) RG(30K,150K) RG(10K,150K)

DFS 6,057 17,587 54,774

PR 3,337 5,155 8,478

MFAS 2,423 3,378 4,584

TS B 2,431 3,622 3,865

TS F 2,307 3,232 3,736

SA F 2,175 2,077 2,707

SA B 2,193 1,881 2,566

TS G 1,860 1,544 1,597

SA-G 1,691 1,506 1,531

H Voting 1,649 1,502 1,513

4.5 Sensitivity to Number of Noisy Edges

Next, we test the sensitivity of H Voting to the number of noisy

edges in the hierarchical relationship. For this, we consider small

(RG (3K , 15K)), medium (RG (3K , 30K)) and a large (RG (3K , 45K))

random DAGs. Figure 7 shows how the precision (“-p” in leg-

end), recall (“-r”) and F1 (“-f1”) scores vary on these graphs as the

fraction of noisy edges is increased (e.g., a fraction of 0.1 in the

x-axis corresponds to adding 1.5K , 3K , and 4.5K noisy edges in

RG (3K , 15K),RG (3K , 30K), and RG (3K , 45K), respectively, for in-

troducing cycles). As expected, the accuracy scores decrease as the

fraction of incorrect edges is increased. But more importantly, we

�nd that the accuracy of our approaches becomes more robust to

noise as the graph size increases. For instance, when 30% (13.5K)

extra noisy edges are added to RG (3K , 45K), H Voting is still able

to achieve a F1 score of around 0.8 and recall of around 0.9. �is

gives us con�dence that in large real-world graphs, H Voting can

accurately identify the edges to remove, even in scenarios with

large amounts of noise.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(3K,15K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(3K,30K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(3K,45K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(5K,25K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(5K,50K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(5K,75K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(10K,50K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(10K,100K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(10K,150K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(15K,75K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(20K,100K)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9RG(30K,150K)

Figure 5: Performance (precision,recall,f-1 score) on di�erent sizes of randomgenerated graphs (path length control parameter

d is unlimited). We can observe that our proposed voting approach,H Voting, achieves the best F1 score across the entire range

of di�erent random DAGs.

4.6 Special case of constrained cycle length

To further understand why the TrueSkill and Social agony based ap-

proaches are more accurate than the traditional heuristics based on

MFAS,DFS or Pagerank, we consider the special case in which cycles

are constrained to be of length at most two. We consider a range

of real-world graphs and insert 1, 500 random edges to introduce

cycles. Note that it is easy to obtain high accuracy in this se�ing,

as even randomly selecting one of the two edges from every simple

cycle achieves an expected 0.5 precision and recall. As expected,

we observe from Figure 8 that generally, most approaches achieve

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9EU-Email

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Web_Google

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Wiki_Vote

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Gnutella

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
R
e
c
a
ll

f=0.9Wiki_Talk

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9Stackoverflow_Q2A

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9DBP_2014

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9DBP_2015

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
c
a
ll

f=0.9DBP_2016

Figure 8: Performance (precision,recall,f-1 score) on di�erent datasets’ corresponding condensation graphs (path length con-

trol parameter d = 2)

cycles created and many new nodes and edges created from one

snapshot to another), we focus on the number of edges that are

removed by di�erent approaches. We observe from Table 4 that,

similar to the results on random DAGs in Section 4.4, H Voting and

SA G break cycles in DBP 2014 graph by removing considerably

fewer edges compared to other approaches.

5 CONCLUSION

In this paper, we address the problem of breaking cycles while

preserving the logical structure (hierarchy) of the directed graph

as much as possible. We propose approaches that explicitly focus

on inferring the graph hierarchy using TrueSkill and Social Agony.

We leverage this inferred hierarchy using an ensemble approach

to identify the edges to be removed. We show that our approaches

Table 4: # edges to be removed

edges to be removed DBP 2014 Category Graph

MFAS 4,075

PR 3,920

DFS 3,602

TS F 3,030

TS B 2,501

TS G 2,479

SA F 1,737

SA B 1,730

H Voting 1,713

SA G 1,672

achieve signi�cantly be�er accuracy compared to the traditional

heuristics based on DFS and MFAS and at the same time, they are

fast, scalable and fully automated. �us, they can support a large

and growing number of applications that rely on clean ontological

knowledge bases representing hierarchical relations.

Future work. In this study, the issue of breaking cycles from

directed graphs is addressed from a heuristic perspective. An alter-

native is to consider model based approaches to predict the edge in

a SCC that has the highest probability of being removed. �e re-

quired features for the predictionmodel can be extracted from graph

embedding methods, such as node2vec[10], or low rank representa-

tions of adjacency matrices, decomposed by matrix factorization (a

widely used technique in recommender systems [4, 19, 32, 40, 41]).

Furthermore, other measures, such as deviation to dominant struc-

tural role, and deviation to transitive closure, may also prove to

be very useful both for the heuristic and model-based approaches.

However, signi�cant e�ort is required to compute these measures

for large graphs in a fast and scalable way.

Acknowledgments �is work is supported by the National

Science Foundation of United States under grant CCF-1645599 and

IIS-1550302. All content represents the opinion of the authors,

which is not necessarily shared or endorsed by their respective

employers and/or sponsors.

REFERENCES
[1] Deepak Ajwani and Tobias Friedrich. 2010. Average-case analysis of incremental

topological ordering. Discrete Applied Mathematics 158, 4 (2010), 240–250.
[2] Ali Baharev, Hermann Schichl, and Arnold Neumaier. 2015. An exact method

for the minimum feedback arc set problem. (2015).
[3] Shuvra S Bha�acharyya, Praveen K Murthy, and Edward A Lee. 1996. So�ware

Synthesis from Data�ow Graphs. Vol. 360. Springer Science & Business Media.
[4] Peizhe Cheng, Shuaiqiang Wang, Jun Ma, Jiankai Sun, and Hui Xiong. 2017.

Learning to Recommend Accurate and Diverse Items. In Proceedings of the 26th
International Conference on World Wide Web (WWW ’17). 183–192.

[5] James J Cimino. 1998. Auditing the uni�ed medical language system with
semantic methods. Journal of the American Medical Informatics Association 5, 1
(1998), 41–51.

[6] Peter Eades and Xuemin Lin. 1995. A new heuristic for the feedback arc set
problem. Australasian Journal of Combinatorics (1995), 15–25.

[7] Peter Eades, Xuemin Lin, and William F Smyth. 1993. A fast and e�ective
heuristic for the feedback arc set problem. Inform. Process. Le�. 47, 6 (1993),
319–323.

[8] G. Even, J. (Se�) Naor, B. Schieber, andM. Sudan. 1998. ApproximatingMinimum
Feedback Sets and Multicuts in Directed Graphs. Algorithmica 20, 2 (1998), 151–
174.

[9] Marco Fossati, Dimitris Kontokostas, and Jens Lehmann. 2015. Unsupervised
Learning of an Extensive and Usable Taxonomy for DBpedia. In Proceedings of the
11th International Conference on Semantic Systems (SEMANTICS ’15). 177–184.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 855–864.

[11] Mangesh Gupte, Pravin Shankar, Jing Li, S. Muthukrishnan, and Liviu I�ode.
2011. Finding Hierarchy in Directed Online Social Networks. In Proceedings of
the 20th International Conference on World Wide Web (WWW ’11). New York, NY,
USA, 557–566.

[12] Ralf Herbrich, Tom Minka, and �ore Graepel. 2007. TrueSkill™: A Bayesian
Skill Rating System. In Advances in Neural Information Processing Systems (NIPS),
P. B. Schölkopf, J. C. Pla�, and T. Ho�man (Eds.). 569–576.

[13] Johannes Ho�art, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.
2013. YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia. Arti�cial Intelligence 194 (2013), 28–61.

[14] Chia-Jui Hsu and Shuvra S Bha�acharyya. 2007. Cycle-breaking techniques for
scheduling synchronous data�ow graphs. Technical Report.

[15] Chia-Jui Hsu, Ming-Yung Ko, Shuvra S Bha�acharyya, Suren Ramasubbu, and
José Luis Pino. 2007. E�cient simulation of critical synchronous data�ow graphs.
ACM Transactions on Design Automation of Electronic Systems (TODAES) 12, 3
(2007), 21.

[16] Donald B Johnson. 1975. Finding all the elementary circuits of a directed graph.
SIAM J. Comput. 4, 1 (1975), 77–84.

[17] Viggo Kann. 1992. On the approximability of NP-complete optimization problems.
Ph.D. Dissertation.

[18] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. Boston, MA,
85–103.

[19] Y. Koren, R. Bell, and C. Volinsky. 2009. Matrix Factorization Techniques for
Recommender Systems. Computer 42, 8 (Aug 2009), 30–37.

[20] Javier Lacasta, Javier Nogueras-Iso, and Francisco Javier Zarazaga-Soria. 2010.
Terminological Ontologies - Design, Management and Practical Applications. Se-
mantic Web and Beyond: Computing for Human Experience, Vol. 9. Springer.

[21] Wooyoung Lee and Dale F Rudd. 1966. On the ordering of recycle calculations.
AIChE Journal 12, 6 (1966), 1184–1190.

[22] Jing Liu, Young-In Song, and Chin-Yew Lin. 2011. Competition-based User
Expertise Score Estimation. In Proceedings of the 34th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’11). New
York, NY, USA, 425–434.

[23] Jing Liu, �an Wang, Chin-Yew Lin, and Hsiao-Wuen Hon. 2013. �estion Di�-
culty Estimation in Community�estion Answering Services. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing,
85–90.

[24] Bodenreider Olivier Mougin Fleur. 2005. Approaches to Eliminating Cycles
in the UMLS Metathesaurus: Nave vs. Formal. American Medical Informatics
Association Annual Symposium Proceedings (2005), 550–554.

[25] Esko Nuutila and Eljas Soisalon-Soininen. 1994. On Finding the Strongly Con-
nected Components in a Directed Graph. Inf. Process. Le�. 49, 1 (Jan. 1994),
9–14.

[26] Bodenreider Olivier. 2001. Circular Hierarchical Relationships in the UMLS:
Etiology, Diagnosis, Treatment, Complications and Prevention. Proceedings of
the American Medical Informatics Association Symposium (2001), 57–61.

[27] Tatiana Orenstein, Zvi Kohavi, and Irith Pomeranz. 1995. An optimal algorithm
for cycle breaking in directed graphs. Journal of Electronic Testing 7, 1 (1995),
71–81.

[28] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. �e
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[29] Domenico M Pisanelli, Aldo Gangemi, and Geri Steve. 1998. An ontological
analysis of the UMLS Metathesaurus.. In Proceedings of the AMIA symposium.
American Medical Informatics Association, 810.

[30] Youssef Saab. 2001. A Fast and E�ective Algorithm for the Feedback Arc Set
Problem. Journal of Heuristics 7, 3 (May 2001), 235–250.

[31] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. ACM, 697–706.

[32] Jiankai Sun, Shuaiqiang Wang, Byron J. Gao, and Jun Ma. 2012. Learning to
Rank for Hybrid Recommendation. In Proceedings of the 21st ACM International
Conference on Information and Knowledge Management (CIKM ’12). 2239–2242.

[33] Osma Suominen and Eero Hyvönen. 2012. Improving the �ality of SKOS
Vocabularies with Skosify. In Proceedings of the 18th International Conference on
Knowledge Engineering and Knowledge Management (EKAW’12). 383–397.

[34] Osma Suominen and ChristianMader. 2014. Assessing and Improving the�ality
of SKOS Vocabularies. Journal on Data Semantics 3, 1 (2014), 47–73. DOI:

h�p://dx.doi.org/10.1007/s13740-013-0026-0
[35] Roberto Tamassia. 2007. Handbook of Graph Drawing and Visualization (Discrete

Mathematics and Its Applications). Chapman & Hall/CRC.
[36] Nikolaj Ta�i. 2014. Faster Way to Agony Discovering hierarchies in directed graphs.

Berlin, Heidelberg, 163–178.
[37] Nikolaj Ta�i. 2015. Hierarchies in Directed Networks. In 2015 IEEE International

Conference on Data Mining. 991–996.
[38] Hahn Udo and Stefan Schulz. 2004. Boosting the Medical Knowledge Infrastruc-

ture��A Feasibility Study on Very Large Terminological Knowledge Bases. Proc
Symp on Engineering of Intelligent Systems (2004).

[39] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[40] Shuaiqiang Wang, Jiankai Sun, Byron J. Gao, and Jun Ma. 2012. Adapting Vector
Space Model to Ranking-based Collaborative Filtering. In Proceedings of the 21st
ACM International Conference on Information and Knowledge Management (CIKM
’12). 1487–1491.

[41] Shuaiqiang Wang, Jiankai Sun, Byron J. Gao, and Jun Ma. 2014. VSRank: A Novel
Framework for Ranking-Based Collaborative Filtering. ACM Trans. Intell. Syst.
Technol. 5, 3, Article 51 (July 2014), 24 pages.

[42] Torsten Zesch and Iryna Gurevych. 2007. Analysis of the Wikipedia Cate-
gory Graph for NLP Applications. In Proceedings of the TextGraphs-2 Workshop
(NAACL-HLT). Association for Computational Linguistics, Rochester, 1–8.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Simple Heuristics Based on BFS or DFS
	2.2 Minimum Feedback Arc Set
	2.3 Domain-specific Algorithms

	3 Our Approach
	3.1 Inferring Graph Hierarchy
	3.2 Strategies to select violation edges

	4 Experiments
	4.1 Datasets
	4.2 Experimental Setup
	4.3 Experimental Results
	4.4 Number of Edges to be Removed
	4.5 Sensitivity to Number of Noisy Edges
	4.6 Special case of constrained cycle length
	4.7 Performance on Wikipedia Category Graph

	5 Conclusion
	References

