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ABSTRACT 
A clique is a maximal complete subgraph of  a graph. The maximum number 
of  cliques possible in a graph with n nodes is determined. Also, bounds are 
obtained for the number of  different sizes of  cliques possible in such a graph. 

§1. Introduction. A graph G consists of a finite set of nodes some pairs of 
which are joined by a single edge. A non-empty collection C of nodes of G forms a 
complete graph if each node of C is joined to every other node of C. A complete 
graph C is said to be maximal with respect to M if C _ M and C is not contained 
in any other complete graph contained in M. If the complete graph C is maximal 
with respect to G then C forms a clique. 

Some time ago Erdtis and Moser raised the following questions: What is the 
maximum number f(n) of cliques possible in a graph with n nodes and which 
graphs have this many cliques? Erd6s recently answered these questions with an 
inductive argument. In §§2 and 3 we determine the value off(n) and characterize 
the extremal graphs by a different argument. 

In §23 and 4 we obtain bounds for g(n), the maximum number of different 
sizes of cliques that can occur in a graph with n nodes. It follows from these 
results that g(n)~ n -  [log2 n]. 

§2. Determining the value off(n). 

THEOREM 1. 

3 n/a, if n = 0  (mod 3); 
I f  n > 2, then f(n) = 4.3 tn/3j-~, if n = 1 (rood 3); 

[ 2.3 t"/3j, if n = 2 (mod 3). 

Proof. The theorem is easily verified if 2 < n _< 4. Let G be any connected 
graph with at least five nodes and which contains c(G) cliques. The set of nodes 
joined to any particular node x of G will be denoted by F(x). Suppose there are 
~(x) complete graphs contained in F(x) that are maximal with respect to G - x, 
the graph obtained from G by removing x and its incident edges. Also, suppose 
there are [3(x) complete graphs contained in F(x) that are maximal with respect 
to F(x) but not with respect to G - x. From these definitions it follows that X(x), 
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the number of cliques of G containing x, and c(G - x), the number of cliques of 
G -  x, are given by the following equations: 

(1) z(x) = ~(x) +/~(x); 

(2) c(O - x)  = c (6)  - [~(x). 

Suppose nodes x and y are not joined in G. Then, if G(x; y) denotes the graph 
obtained by removing the edges incident with x and replacing them by edges 
joining x to each node of F(y), it follows that 

(3) c(G(x, y)) = c(G) + Z(Y) - X(x) + a(x). 

To prove this, let fl(x) = fl(x, y) + i f(x ,  y), where fl(x, y) denotes the number of 
complete graphs in F(x) n F(y) that are maximal with respect to G - x - y. In 
transforming G into G(x; y) the contribution of these complete graphs to the 
total number of cliques is not affected. There is a loss, however, of the cliques 
counted by i f (x ,y) .  In adding the edges joining x to the nodes of F(y) it is not 
difficult to see that a new clique is formed for each of the complete graphs counted 

by ~(y) and fl'(y,x). Hence, 

c(G(x; y)) = c(G) - i f ( x ,  y)  + ~t(y) + fl ' (y,  x)  

c(O) - / r ( x ,  y) -/~(x, y) + X(Y), 

c(G) + Z(Y) - Z(x) + ~(x), 

using (1) and the fact that fl(x, y )=  fl(y,x). 

Now let G be any graph with n nodes (n > 5) and having a maximal number of 
cliques. A simple argument shows that G is connected and has no node joined to 
every other node. If nodes x and y are not joined in G then it must be that 
X(x) = Z(Y), for if )~(y)> Z(x), say, the graph G(x; y) would gave more cliques 
than G, by (3), and this would contradict the definition of G. It also follows from 
(3) that g(x) = 0 for all nodes x of G. 

For some arbitrary node x of G let a, b,- . . ,f  be the other nodes with which x is 
not joined. We may replace G t l )= G by G (2)= G(a; x) without affecting the 
number of cliques in the graph or the properties described in the preceding parag- 
raph. We now replace G (2) by G (a) = G (2) (b ;  x)  and, continuing this process, 
we eventually obtain a graph which has the same number of cliques as G, satisfies 
the properties in the preceding paragraph, and in which none of the nodes x, a,b. i . , f  
are joined to each other but all are joined to all the remaining nodes. 

We may now apply this procedure with respect to some node y in F(x). By 
continuing to make these transformations it is clear that we will ultimately obtain 
a graph G* which has as many cliques as G and which has the following simple 
structure: The nodes of G* may be partitioned into disjoint subsets such that two 
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nodes are joined if and only if they do not belong to the same subset. If these 

subsets have Jl,J2,"',Jz nodes, where Jl +J2 + "'" +J l  = n, then it follows that 

(4) c(G*) =JlJ2 ""Jr 

Simple calculations show that this product assumes its maximum value when as 
many as possible of the subsets have three nodes and the remaining ones have 
two or four nodes. Since G was assumed to have a maximal number of cliques 
and since c(G)= c(G*), it follows that f ( n )  is given by the above expressions. 

§3. Characterizing the extremai graphs. Let Hn denote the graphs havingf(n)  
cliques described at the end of the preceding section. 

THEOREM 2. I f  the graph G has n nodes and f (n )  cliques then G = Hn, i f  
n > 2 .  

Proof. The theorem is easily verified when 2 < n < 4. Suppose G is some 

graph with n nodes (n > 5) and f ( n )  cliques which is not one of the graphs H.. 
By the preceding argument it is possible to repeatedly modify the graph G until a 
graph H.  is obtained, without affecting the number of  cliques it contains. Let G' 
denote the last graph in this sequence before H,. That  is, G' has f (n )  cliques and 
contains two nodes x and y which are not joined to each other such that G'(x; y) 

Sn. 
Let us suppose that n = 31, in which case H~ consists of  l triplets of nodes 

such that two nodes are joined if and only if they do not belong to the same 
triplet. Since x and y are not joined it follows that they belong to the same triplet 
of  un joined nodes in H..  Let z be the third node of this triplet. If, in G', x is 
joined to t, of  the nodes in the i ' th remaining triplet of unjoined nodes, 
i =  1 , 2 , . . . , l - 1 ,  then it is not difficult to see that 

(5) Z(x) = tlt2 "'" tt- 1" 

NOW X(X)= Z(Y), by the earlier argument, and it is easily seen that X(Y) 
_- 3 l- 2. Since each t~ < 3 in (5) it must be that t~ = 3 for i = 1, 2, . . . ,  1 - 1. That  is, 
F(x) __ G' - x - y - z. If  x is joined to z in G', then c(G') = 2.31-1. But this 
is less than f(n) ,  a contradiction. Hence x is joined to every node in G' except z 
and y. This implies that G ' =  H,,  by definition. 

The proof  of  the theorem may be completed by applying a similar argument in 
the cases when n is congruent to 1 or 2 modulo 3. 

§4. A lower bound for g(n). It is not difficult to construct a graph with n 
nodes which contains cliques of sizes 1,2,.. . ,[½(n + 1)]. This shows that 

g(n) >= [½(n + 1)] for all n. When n > 26, an improved bound is given by the 
following result. (In what follows all logarithms are to the base two.) 

THEOREM 3. 
g(n) >_ n - [log n] - 2[log log n] - 4. 
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Proof. We temporarily restrict our attention to the case where n > 47. To 
establish the lower bound for g(n) we exhibit a graph L. which has cliques of at 
least n -  [log n] -2[ ' log log n] - 4  different sizes. Let m be the unique integer 
such that 

where 
n = 2" + 2m + ['log m] + (l + 3), 

0 _< 1 -< 2 " +  1 + [log(m + 1)] - [log m]. 

When 0 _< 1 _< 2", let L, be the graph with n nodes illustrated in Figure 1, where, 
for convenience, we let 

t = [ log m] + 1 

and 
h = 2  m-1 - 2 ' -  t + 1. 

(The restriction that n > 47 was made to insure that h > 0.) The symbol < k > 
denotes a complete graph of k nodes. We refer to the nodes in the first, second, 
and third columns as the A, B, and C nodes, respectively; in addition, the 2"-  1 + 1 

encircled B nodes will also be referred to as D nodes. 
The edges of the graph L, are as follows: Each A node is joined to every other A 

node, and similarly for the B and C nodes. Each A node a is joined to every B 
node not contained in a complete graph connected with a by a dotted line in the 
diagram. (The D nodes are encircled to indicate that they are all joined to all the A 
nodes except the one indicated.) Finally, each C node c is joined to every D node 
not contained in a complete graph connected with c by a dotted line in the diagram. 

<1> <t + l> 

<h + I> (I> 
<2'-* + 1> <1> 

<I> 

( 2 +  1> 

t.(1 + 1> 

<i> <2 "-~+ i> 

<i> 
<1> 

(1> <4 + 1> 
<1> <2 + 1> 
O >  . . . .  <1 + 1> 

Figure 1 
There are a total of 2" + 1 cliques in L. involving only A or B nodes since the 
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nodes of  one and only one of the complete graphs connected by each of the first 
m + I dotted lines can belong to any one such clique. The smallest of  these cliques 
consists of  the m + 1 A nodes and the largest consists of  the 2" + rn + l B nodes. 
From the nature of L,,  the fact that 0 < l <- 2", and the fact that every positive 
integer can be expressed as a sum of distinct powers of two, it follows that there 
is a clique involving only A and B nodes of  every intermediate size as well. 

Similarly, among the cliques involving only C or D nodes there are certainly 

cliques of every size between t + 1 and 2 t+  t. (There may be still larger cliques 
of this type which contain the top complete graph of h + 1 nodes, but for our 
present purpose we need not consider these.) 

From the definition of  t it follows that 

2 t + t > m, 

so L, contains cliques of  all sizes between t + 1 and 2 " +  m + l, inclusive. Thus, 
the number of different sizes of cliques that occur in L, is 

2" + m + l -  t = n - m -  2[ logm] - 4. 

Since m < log n, this suffices to complete the proof  of the theorem under the 
above assumptions. 

The cases where 1 = 2" + 1 or 2"  + 2 can be treated very easily. First set 
aside the one or two "ex t ra"  nodes and form the graph described above on the 

remaining nodes. Then adjoin one of the "ex t ra"  nodes as an isolated node to 
form a clique of size one and if there is a second "ex t ra"  node attach it to any 
other non-isolated node to form a clique of size two. It is not difficult to 
check that, for the values of  n under consideration, these two new cliques will 
increase the total number of different sized cliques to the required amount. 

It can be shown, using an example that differs from the graph in Figure 1 in 
that there are no C nodes, that 

(6) g ( n )  > n - 2[log n] - 1, 

for all n. This is weaker, of course, than theorem 3 when n is large. However, 
for n < 47 this result is at least as strong as the one we are trying to prove, and 

hence the truth of Theorem 3 when n < 47 follows from (6). We omit the proof  

of (6) because it is similar to and simpler than the proof  given for theorem 3 when 
n > 4 7 .  

Somewhat sharper lower bounds could be obtained by using more comp- 
licated examples, but the improvement does not seem to be worth the effort. 

§5. An upper bound for g(n). 

THEOREM 4. I f  n > 4, t h e n  g ( n )  < n - [log n]. 

Proof, Consider any graph G, with n nodes, where n > 4. If  a largest clique T 
in G has t nodes then we may as well suppose that 
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t_~ n -- [ l o g n ]  + 1, 

since the number of  different sizes of cliques occurring in Gn cannot exceed t. 
Let S denote the set o f s  = n - t nodes not belonging to T. Since each node of  Tis 
joined to every other node of T it is not difficult to see that if A and B are two 
cliques with A ~ S = B r~ S then it must be that A = B. Thus, the number of  

different sizes of cliques occurring in G~ is certainly no greater than S, the number 
of subsets of  S. But, 

2 s < 2 tzog .1-* 

and this last quantity is less than or equal to n - [log n] if n >_- 4. This completes 
the proof  of the theorem. 

§6. Concluding remarks. The maximum number of edges a graph with n 
nodes can have without containing a clique with more than l nodes is an im- 
ediate consequence of  a theorem of Tur/m [1]. The maximum number of  cliques 
a graph with n nodes can have without containing a clique with more than I nodes 

is equal to 

max j t j 2 " " j ,  

where Jt + J 2  + "'" + j r  = n and t < I. This follows from the fact that the trans- 
formations used in the proof  of Theorem 1 do not increase the size of  the largest 
cliques. I f  a node x is joined to precisely k other nodes in a graph then it is clear 
that the maximum possible number of cliques containing x is f (k) .  

A bipartite graph consists of two disjoint sets of  nodes, A and B, such that no 
edge joins two nodes belonging to the same set. Let A and B contain a and b 
nodes, respectively, where 2 _< a < b. The definition of  a clique in a bipartite 
graph is similar to the definition of a clique in an ordinary graph except that in 

the bipartite case we require that if a clique does not consist of  a single isolated 
node then it must contain nodes from both A and B. It is a simple exercise to 

prove that the maximum number of cliques possible in such a bipartite graph is 
2 a - 2. We have been unable, however, to obtain good analogues to theorems 3 

and 4. 
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