
Interaction-Based Test-Suite Minimization
Dale Blue

IBM Systems & Technology Group
2455 South Road

Poughkeepsie, NY 12601, USA
dblue@us.ibm.com

Itai Segall
IBM, Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
itais@il.ibm.com

Rachel Tzoref-Brill
IBM, Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
rachelt@il.ibm.com

Aviad Zlotnick
IBM, Haifa Research Lab
Haifa University Campus

Haifa, 31905, Israel
aviad@il.ibm.com

Abstract—Combinatorial Test Design (CTD) is an effective test
planning technique that reveals faults resulting from feature
interactions in a system. The standard application of CTD
requires manual modeling of the test space, including a precise
definition of restrictions between the test space parameters, and
produces a test suite that corresponds to new test cases to be
implemented from scratch.

In this work, we propose to use Interaction-based Test-
Suite Minimization (ITSM) as a complementary approach to
standard CTD. ITSM reduces a given test suite without impacting
its coverage of feature interactions. ITSM requires much less
modeling effort, and does not require a definition of restrictions.
It is appealing where there has been a significant investment in
an existing test suite, where creating new tests is expensive, and
where restrictions are very complex. We discuss the tradeoffs
between standard CTD and ITSM, and suggest an efficient
algorithm for solving the latter. We also discuss the challenges
and additional requirements that arise when applying ITSM to
real-life test suites. We introduce solutions to these challenges
and demonstrate them through two real-life case studies.

I. INTRODUCTION

As software systems become increasingly complex, ver-
ifying their correctness is more challenging. For example,
in highly configurable systems, which gain more and more
attention in recent years, the many coexisting optional features
might unintentionally interact with each other in faulty ways.
While verification approaches such as formal verification
and model based testing might require extremely expensive
resources due to their sensitivity to the size and complexity
of the software, functional testing is prone to omissions, as
it always involves a selection of what to test from a possibly
enormous test space. Therefore, careful consideration of what
to include in the testing is required. The process of test
planning refers to the definition and selection of tests out
of the space of potential tests, with the goals of eliminating
redundancy and reducing the risk of bugs escaping to the field
as much as possible.

Combinatorial Test Design (CTD), also known as combina-
torial testing, is an effective test planning technique, in which
the test space is modeled by a set of parameters, their respec-
tive values, and restrictions on the value combinations. The test
space represented by this model is any assignment of one value
to each parameter, that does not violate the restrictions. A

The research leading to these results has received funding from the Eu-
ropean Community Seventh Framework Programme [FP7/2007-2013] under
grant agreement 257574 (FITTEST).

subset of the space is then automatically constructed so that it
covers all valid value combinations (a.k.a interactions) of every
t parameters, where t is usually a user input. In other words,
for every set of t parameters, any combination of t values to
them will appear at least once in the test plan (unless there
is no valid test that contains it, according to the restrictions).
In general, one can require different levels of interaction for
different subsets of parameters. The most common application
of CTD is known as pairwise testing, in which the interaction
of every pair of parameters must be covered. Each test in the
result of CTD is an assignment of values to all the parameters,
and represents a high level test, or a test scenario, that needs
to be translated to a concrete executable test.

The reasoning behind CTD is the observation that in most
cases the appearance of a bug depends on the combination
of a small number of parameter values of the system under
test. Experiments show that a test set that covers all possible
pairs of parameter values can typically detect 50% to 75%
of the bugs in a program [3], [10]. Other experimental work
has shown that typically 100% of bugs can be revealed by
covering the interaction of between 4 and 6 parameters [6].

As indicated by various studies and reports [1], [11], [4],
[2], CTD is very effective for a variety of system types and
testing domains, and is considered best practice when the
tested functionality depends on multiple factors such as inputs,
configuration elements and data items. However, we observe
two main requirements of CTD that limit its application in
practice. The first is the requirement to precisely define the
restrictions between the different parameters. If the restrictions
are not accurately defined or not defined at all, there is a
very high probability that CTD will generate tests that violate
the relationships between the parameters, and therefore do
not translate to concrete tests that can be implemented and
executed. While the requirement to define restrictions is not
a limitation for simple cases like configuration spaces in
which the restrictions are obvious, when the relationships
between the parameters are complex, e.g., as in the healthcare
insurance domain, manually capturing the restrictions is a
labor-intensive task that might be infeasible in practice. The
second requirement has to do with the fact that the test suite
constructed by CTD corresponds to new test cases that need
to be implemented. Since the test space in real-life cases is
usually enormous, the probability that CTD will produce a
test that corresponds to an existing one is close to zero. When

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

182

the cost of implementing a test is high, e.g. when large and
specific amounts of data are required for each test, constructing
a complete new test suite might be infeasible in practice.

In this work, we propose to use Interaction-based Test-Suite
Minimization (ITSM) as a complementary approach to CTD,
for cases where standard CTD may be best practice but cannot
be applied due to the requirements described above. Rather
than constructing a new test suite that provides full interaction
coverage, ITSM reduces an existing test suite, while preserving
its interaction coverage. Similarly to CTD, ITSM requires
defining the parameters of the test space and their values, but
it does not require defining restrictions between the values. It
is then given a test suite, where each test is in the form of an
assignment of values to the parameters, and selects a subset
of the test suite that preserves its t-wise value combinations.
Clearly, like other test minimization techniques, ITSM is
applicable only when there is an existing test suite that is
on the one hand extensive and representative enough so that
omissions are not a concern, and on the other hand is too large
to run to completion and may contain redundant test cases.

Since ITSM is a test suite minimization technique rather
than a test design technique, it is not guaranteed to provide full
interaction coverage of the test space – any interactions that are
missed by the original test suite will clearly be omitted also by
the subset selected by ITSM. However, ITSM can be applied
without the two potentially problematic requirements of CTD
– it does not require defining restrictions, nor implementing
new tests. Its result contains only existing tests, and these are
presumed to be valid, i.e., they do not violate the (unspecified)
test space restrictions. Another point to consider is that while
ITSM does not require defining restrictions, it does require
translating test cases to combinations of parameter values.
When the original test cases are represented in a structured
or semi-structured format, the values can be extracted auto-
matically. Otherwise, the translation might be a labor-intensive
manual effort.

CTD and ITSM can also be combined to produce an
optimized test plan while still reusing existing tests. In this
approach, CTD is first applied to produce a complementary
test suite that covers the t-wise interactions that are not cov-
ered by the existing test suite [5]. The two test suites are then
combined, and ITSM is applied to reduce it. This approach is
suitable when restrictions can be defined, implementing new
tests is costly but possible, and there has been a significant
investment in an existing test suite, and thus reusing it is
desirable. This paper, however, focuses on the scenario where
only ITSM is applied.

We present two real-life case studies that demonstrate the
scenario where standard CTD was inapplicable and ITSM
was successfully used instead. In the first case study, from
the healthcare insurance domain, the restrictions were too
complex to specify, and implementation of new tests was
highly costly. However, the existence of numerous insurance
claims from field usage enabled the usage of ITSM. In the
second case study we look at extending a legacy computer
terminal interface via web services. The test space in use

was represented explicitly test by test, and translating it to
restrictions between the test space parameters was too costly.
Instead, the original representation was used as input to
ITSM. For both case studies, we describe the challenges and
requirements we encountered while applying ITSM, such as
challenges related to translating existing tests to combinations
of parameter values, and non-standard coverage requirements,
and introduce our solutions for them.

In addition, we discuss different approaches for solving
the ITSM problem. That is, given a test suite in the form
of parameter value combinations and interaction coverage
requirements, how to select a small subset of the test suite
that preserves the same interaction coverage as the entire
suite. Though it is possible to reduce an ITSM problem to a
CTD problem and apply existing CTD algorithms to solve it,
translating a test suite to a CTD model is very costly. Instead,
we propose an efficient algorithm for solving ITSM directly.

A well known concern of test suite minimization techniques
is that of loss of fault detection. The effectiveness of mini-
mization techniques is measured not only by their reduction
power, but also by their ability to maintain the same level of
fault detection as the original suite. Since studying the fault
detection capabilities of ITSM is left for future work, this is
a threat to validity that needs to be considered. Studies that
investigate the loss of fault detection concern have conflicting
findings. While some studies [13], [12], [7] showed no signif-
icant decrease in fault detection effectiveness after test suite
minimization, in other empirical studies [8], fault detection
capabilities of test suites were severely compromised. The
reasoning behind our minimization approach is that most
software faults are caused by an interaction between a small
number of parameters, as demonstrated in several studies [3],
[6], [10]. Therefore, the fault detection effectiveness of the
minimized test suite is expected to be similar to that of the
original one. However, actual empirical data must be obtained
to support these expectations.

The rest of the paper is organized as follows. In Section II
we introduce ITSM via a simplified example. Section III
presents our algorithm for solving ITSM. In section IV we
present in detail two case studies for ITSM, as well as
additional results from applying ITSM to various systems.
Section V discusses related work. Finally, Section VI draws
our conclusions and future research directions.

II. INTERACTION-BASED TEST-SUITE MINIMIZATION

In this section, we introduce the main idea of interaction-
based test-suite minimization via a simplified example. Con-
sider testing the claims system of a healthcare insurance
provider. Each filed claim consists of information about the
patient and the treatment received. Each of these further ex-
pands to more detailed information. For example, the patient’s
information may consist of their age, history (e.g. number
of previous insurance claims, and their general health status),
type of insurance etc. Similarly, the treatment information may
consist of the exact type of treatment given, the geographic

183

location in which it was given, the type of clinic, the involved
personnel, etc.

Table I depicts a highly simplified model for such a system.
Table II further lists a pairwise test plan for this model
(i.e., CTD with t = 2). This test plan consists of 15 tests,
and achieves full pairwise coverage of the model. Note that
since no restrictions have been defined for the model, all
combinations in the model are considered valid.

TABLE I
EXAMPLE HEALTHCARE MODEL

Parameter Values
Gender Female, Male
Age Child, Adult, Elderly
Past claims None, One, Many
Health Healthy, Some non-chronic history, Chronic disease
Caregiver Doctor, Paramedic, Nurse
Treatment Surgery, Vaccination, Emergency
Location Home town, Home state, Out-of-state
Clinic Hospital, Private clinic, Home

In order to implement the test plan suggested in Table II, one
needs for each of the rows to either find or generate patients,
caregivers, clinics, etc., that exactly match the characteristics
defined by the tests. For example, in order to file the claim
dictated by the first row, one needs to have in the system a
female child with many past claims who is healthy. A claim
should then be filed for her name, for getting a surgery by a
doctor in an out-of-state private clinic. Such a doctor and a
clinic need to also exist in the system. While this may seem
possible for this small, almost toy-sized, model – for real-
life cases the chances of finding patients, doctors, etc. which
exactly match the required characteristics are slim-to-none.
Alternatively, one may consider to generate this data in the
system specifically for testing purposes. However, the effort
of setting up the exact required data is also high and often
impractical.

Moreover, the model as it is now contains no restrictions.
Therefore some tests suggested by the CTD algorithm are not
even valid ones. For example, in the last test in the table,
a claim is filed for a nurse performing surgery, a case which
should clearly be excluded. For systems with complex business
logic, correctly identifying and defining the restrictions is a
daunting task which is often infeasible, or at least not cost-
worthy.

We therefore propose to use interaction-based test-suite
minimization. The idea behind this approach is, given a set
of existing tests, to select a subset that maintains the same
coverage of value combinations as the existing set (up to
a certain user-supplied interaction level, t). In the above
healthcare example, one could collect all claims filed in a
certain period of time (say, a few months), and select a subset
of them to maintain as a test suite. If a long enough period of
time is taken, then most interactions of interest would, with
high probability, be covered by the existing set, thus will also
be covered by the minimized one.

Now consider Table III. It illustrates a possible set of exist-
ing tests (picked randomly from the model, for illustration).
For our example, let’s assume that this table represents the set
of claims filed in the last month in the system. Clearly, all
these claims are valid ones (i.e. ones that are implementable
and executable. After all, these claims were indeed filed in
the system recently). Moreover, all patients participating in
these tests actually do exist, and similarly, so do the caregivers,
clinics, etc. Therefore, it is easy to re-execute each of these
tests. On the other hand, this test plan might be too large, and
needs to be diluted.

Is has been shown [3], [10] that most software defects are
caused by an interaction of a small number of parameters.
Therefore, a reasonable criterion for choosing a subset of the
tests to maintain is that the same set of interactions up to a
small given size are covered. For example, one may require
that all pairs of values that appear in the large set also appear
in the selected one. As mentioned above, since the existing
tests represent the set of claims filed in the system during a
relatively long period, it is reasonable to believe that most
interesting interactions of parameters are covered by this set
of tests. Therefore the sacrifice in coverage resulting from
applying ITSM, as opposed to “standard” CTD, is small.
Moreover, some of the interactions that do not appear in the
existing tests are such that are in fact invalid. Our approach
thus removes the need of explicitly specifying the invalid
combinations (i.e., restrictions).

Getting back to our example, the set of tests in Table III
consists of 50 tests. These tests cover 222 out of the 231 pairs
of values in the model. Some of these pairs are uncovered
since they are in fact invalid (e.g., a surgery performed at
home, or by a nurse), while others are due to the fact that
no claim including them has been filed during the collection
period (e.g., an adult having surgery). The test plan in table IV
gives the result of running the ITSM algorithm on this input,
with pairwise coverage requirement. The table consists of only
22 tests, all chosen from the given 50, which achieves the same
pairwise coverage as the original 50.

III. IMPLEMENTATION

We now discuss the implementation of ITSM. We refer to
the value combinations that are to be covered as coverage
targets. Coverage targets may be given in different forms,
such as a Cartesian product (e.g., “every combination of size
t”, just as in standard CTD), or as explicit sets of value
combinations to be covered. We say that a test t covers a
coverage requirement c if the values specified by c are used
in t.

Given a suite of tests T = ti, i = 1 . . . n, a set of
coverage targets C = cj , j = 1 . . .m, and a mapping
M : T → 2C that specifies the coverage targets that are
covered by each test in T , the objective of an interaction-based
test-suite minimization algorithm is to find S = si, i = 1 . . . k,
a subset of T that covers all the targets that T covers –
S ⊆ Ts.t. ∪i=1...n M (ti) = ∪i=1...kM(si).

184

TABLE II
PAIRWISE TEST PLAN FOR THE EXAMPLE HEALTHCARE MODEL

Gender Age PastClaims Health CareGiver Treatment Location Clinic
Female Child Many Healthy Doctor Surgery OutOfState PrivateClinic
Male Adult None SomeNonChronicHistory Doctor Vaccination HomeTown Home
Male Child One ChronicDisease Nurse Emergency HomeState Hospital
Female Elderly None ChronicDisease Paramedic Surgery OutOfState Home
Female Elderly Many Healthy Paramedic Emergency HomeTown Hospital
Male Elderly One SomeNonChronicHistory Doctor Emergency OutOfState PrivateClinic
Female Elderly None Healthy Nurse Vaccination OutOfState Hospital
Male Adult One Healthy Nurse Surgery HomeState Home
Male Elderly Many SomeNonChronicHistory Paramedic Vaccination HomeState PrivateClinic
Female Adult None SomeNonChronicHistory Nurse Emergency OutOfState PrivateClinic
Female Adult None SomeNonChronicHistory Doctor Surgery HomeState Hospital
Male Child None SomeNonChronicHistory Paramedic Emergency HomeTown Home
Female Adult One ChronicDisease Paramedic Vaccination HomeTown PrivateClinic
Male Child One ChronicDisease Doctor Vaccination OutOfState Home
Male Adult Many ChronicDisease Nurse Surgery HomeTown Home

A naı̈ve approach to implementing test suite minimization
would be by reduction to CTD, where the set of tests that the
CTD algorithm may choose from is limited to the input tests.
Exact implementation details depend on the CTD algorithm
used, but common to all is the need to represent the set of
possible tests (or the complementary set, of excluded tests).
Unfortunately, compact representations that are very efficient
for CTD turn out to be inefficient for test suite minimization.
For example, [9] presents a BDD-based algorithm for CTD.
In order to use it for ITSM, one needs to capture the set
of existing tests as a BDD, e.g., by disjuncting the BDDs
representing the individual tests. BDDs are an effective data
structure for representing structured sets, i.e. ones for which
the characteristic formula is relatively simple. Since existing
tests can very rarely be characterized by a simple formula,
this representation becomes very inefficient for large sets
of existing tests. Alternatively, one could try to capture the
complementary set, of excluded test, using standard restriction
notations. This is typically also an infeasible approach.

To mitigate these problems, we describe a fast algorithm
that uses a low overhead data structure.

First, consider the following simple and greedy algorithm:

• For i = 1 . . . n if ti covers a target that is not yet covered
by S then add ti to S.

It is easy to see that at the end of the loop, S covers all the
targets that T covers. However, it is also easy to see that S is
not always the best solution. For example, if the test suite has
two tests, the first of which covering one target and the second
covering the same target and another one, this algorithm will
select both tests, whereas the second test suffices.

This algorithm visits each test in T at most once. Its time
complexity is O(|T | · |C|).

The following algorithm is less greedy, produces better
results, but works harder:

• While S covers less than T , add to S the test that covers
the most targets that are covered by T but not yet covered
by S.

This algorithm also computes a correct result, that is, in
the end S covers the same targets as T does. Its result is not
optimal, but it works well for the example above.

This algorithm visits n − i tests in its i-th iteration, hence
its time complexity is O(|T | · |C| · |S|). In the worst case,
|S| = |T |, but in practice |S| is frequently orders of magnitude
less than |T |.

We next explore three ways to improve this algorithm. Two
reduce the constant factor in the O() complexity expression
of this algorithm, and one results in a smaller output test suite.

• Avoiding unnecessary calculations
• Test prioritization
• Counting uncovered targets

1) Avoiding unnecessary calculations: We introduce an
improvement that significantly reduces the number of times
that uncovered targets are counted.

Note that the number of uncovered targets that a test can
contribute in one iteration is never higher than the number it
could contribute in a previous iteration. Hence, if the current
iteration has already found a test that contributes maxSoFar
new targets, then the O(|C|) process of counting uncovered
targets for any test that could contribute less than maxSoFar
in previous iterations can be skipped. This is illustrated in
Algorithm 1, where testi.prevCount is the latest computed
contribution for testi. Note that this value is not necessarily
computed in every iteration.

1 if testi.prevCount > maxSoFar then
2 Compute count, the number of uncovered

targets that testi covers
3 testi.prevCount← count
4 if count > maxSoFar then
5 best← testi
6 maxSoFar ← count
7 end
8 end

Algorithm 1: Skipping unnecessary counts

185

TABLE III
TEST PLAN FOR THE EXAMPLE HEALTHCARE MODEL, CONSISTING OF 50 EXISTING TESTS

Gender Age PastClaims Health CareGiver Treatment Location Clinic
Female Child None ChronicDisease Paramedic Emergency HomeTown Hospital
Female Elderly One Healthy Nurse Vaccination OutOfState PrivateClinic
Male Child Many Healthy Paramedic Emergency OutOfState Hospital
Female Adult Many ChronicDisease Paramedic Emergency OutOfState Home
Male Child None SomeNonChronicHistory Nurse Emergency HomeState Hospital
Male Adult Many SomeNonChronicHistory Paramedic Emergency OutOfState Home
Male Elderly One ChronicDisease Paramedic Emergency HomeState Home
Female Child None Healthy Nurse Vaccination HomeTown Home
Male Adult One Healthy Nurse Vaccination HomeTown PrivateClinic
Female Adult Many Healthy Nurse Emergency OutOfState Home
Male Elderly None ChronicDisease Doctor Surgery OutOfState Hospital
Male Elderly One SomeNonChronicHistory Doctor Surgery OutOfState PrivateClinic
Male Adult Many SomeNonChronicHistory Doctor Emergency HomeState Home
Male Elderly Many Healthy Nurse Emergency HomeState Hospital
Female Elderly Many ChronicDisease Doctor Surgery OutOfState PrivateClinic
Male Child Many ChronicDisease Nurse Emergency OutOfState Home
Female Adult One ChronicDisease Nurse Vaccination HomeTown Hospital
Male Elderly Many ChronicDisease Nurse Vaccination OutOfState Hospital
Male Adult None Healthy Nurse Emergency HomeTown PrivateClinic
Male Elderly Many ChronicDisease Doctor Surgery OutOfState Hospital
Male Child Many ChronicDisease Doctor Surgery OutOfState PrivateClinic
Male Elderly None Healthy Paramedic Emergency OutOfState Home
Male Elderly One SomeNonChronicHistory Nurse Emergency HomeTown PrivateClinic
Female Elderly Many SomeNonChronicHistory Nurse Emergency OutOfState Hospital
Male Elderly One ChronicDisease Paramedic Emergency HomeTown PrivateClinic
Female Elderly Many ChronicDisease Paramedic Emergency OutOfState Home
Male Adult Many ChronicDisease Paramedic Emergency HomeState Home
Female Elderly None ChronicDisease Nurse Vaccination OutOfState Home
Male Child None SomeNonChronicHistory Paramedic Emergency HomeState Home
Male Elderly None SomeNonChronicHistory Doctor Emergency OutOfState Home
Female Elderly Many ChronicDisease Paramedic Emergency OutOfState Home
Male Adult Many Healthy Paramedic Emergency OutOfState Hospital
Female Child Many Healthy Doctor Surgery OutOfState PrivateClinic
Female Adult None ChronicDisease Paramedic Emergency HomeTown Home
Female Child Many ChronicDisease Nurse Vaccination HomeState Home
Female Elderly Many ChronicDisease Nurse Emergency OutOfState PrivateClinic
Male Adult One SomeNonChronicHistory Paramedic Emergency OutOfState Hospital
Female Elderly None ChronicDisease Doctor Emergency HomeState PrivateClinic
Male Child None Healthy Nurse Vaccination OutOfState Home
Female Child None SomeNonChronicHistory Paramedic Emergency HomeTown PrivateClinic
Male Elderly Many SomeNonChronicHistory Doctor Emergency HomeTown Hospital
Male Elderly One Healthy Paramedic Emergency OutOfState Home
Male Child One ChronicDisease Paramedic Emergency HomeTown PrivateClinic
Male Adult One ChronicDisease Nurse Vaccination HomeTown Home
Male Elderly One Healthy Paramedic Emergency OutOfState Home
Male Elderly Many ChronicDisease Doctor Emergency OutOfState Hospital
Male Elderly None SomeNonChronicHistory Nurse Emergency HomeState Hospital
Male Elderly Many Healthy Paramedic Emergency HomeTown PrivateClinic
Male Elderly One Healthy Paramedic Emergency OutOfState Home
Male Child Many ChronicDisease Nurse Emergency HomeState Home

Table V shows that this improvement provides a significant
speedup. We show results for three data sets. The second
column (Tests) shows the number of initial tests per data set.
The third column (Targets) shows the number of targets that
are to be covered. The next two columns (CountsWithout-
Skipping and TimeWithoutSkipping) show the total number
of times that a test’s possible contribution to coverage is
computed and the total execution time (in seconds) without
the above improvement, respectively. The last two columns
show the same where the improvement is used. For large data

sets the improved algorithm is about 32 times faster than the
straightforward solution.

2) Test prioritization: Changing the priority of selecting
tests results in a smaller output test suite.

So far, we only considered the number of uncovered targets
in preferring one test over another. Typically, this results
in the algorithm ending with many iterations selecting tests
that contribute only one target. We experimented with several
weighting schemes that give a higher weight to targets that
appear less in the input, and preferring higher weight tests to
lower ones.

186

TABLE IV
ITSM RESULT FOR THE EXAMPLE HEALTHCARE MODEL, CONSISTING OF 22 OUT OF THE 50 EXISTING TESTS

Gender Age PastClaims Health CareGiver Treatment Location Clinic
Female Child Many Healthy Doctor Surgery OutOfState PrivateClinic
Male Child None SomeNonChronicHistory Paramedic Emergency HomeState Home
Female Adult One ChronicDisease Nurse Vaccination HomeTown Hospital
Male Elderly None ChronicDisease Doctor Surgery OutOfState Hospital
Male Elderly One Healthy Paramedic Emergency OutOfState Home
Female Child None SomeNonChronicHistory Paramedic Emergency HomeTown PrivateClinic
Male Elderly Many Healthy Nurse Emergency HomeState Hospital
Male Adult Many SomeNonChronicHistory Doctor Emergency HomeState Home
Male Adult None Healthy Nurse Emergency HomeTown PrivateClinic
Female Child Many ChronicDisease Nurse Vaccination HomeState Home
Female Elderly Many ChronicDisease Nurse Emergency OutOfState PrivateClinic
Male Elderly One SomeNonChronicHistory Doctor Surgery OutOfState PrivateClinic
Female Adult Many ChronicDisease Paramedic Emergency OutOfState Home
Male Elderly Many SomeNonChronicHistory Doctor Emergency HomeTown Hospital
Female Child None Healthy Nurse Vaccination HomeTown Home
Female Elderly None ChronicDisease Doctor Emergency HomeState PrivateClinic
Male Elderly One ChronicDisease Paramedic Emergency HomeState Home
Male Child None SomeNonChronicHistory Nurse Emergency HomeState Hospital
Male Adult One SomeNonChronicHistory Paramedic Emergency OutOfState Hospital
Female Elderly One Healthy Nurse Vaccination OutOfState PrivateClinic
Male Child One ChronicDisease Paramedic Emergency HomeTown PrivateClinic
Male Elderly Many ChronicDisease Nurse Vaccination OutOfState Hospital

TABLE V
EFFECT OF THE COUNT SKIPPING IMPROVEMENT

DataSet Tests Targets CountsWithoutSkipping TimeWithoutSkipping CountsWithSkipping TimeWithSkipping
1 539 9,904 126,374 0.516 5,321 0.141
2 280,884 4,378 27,195,508 96.502 1,661,447 3.016
3 4,008,037 2,392 1,250,607,544 618.873 18,455,267 19.331

The intuition behind this approach is that when such weights
are used, the first iterations select tests that cover many hard
to find targets, and the last iterations easily find many easy to
find targets.

Indeed, using weights may reduce the size of the selected
suite by up to 15%.

3) Counting uncovered targets: Finally, ITSM can be
speeded up by performing several bit operations at a time.

We maintain a mapping from each test to the targets that
it covers. Covered targets are represented by bits in integer
variables, which we call elements, and counting the number
of set bits in a bitmap is done using a lookup table for an
element at a time. We get a significant speedup by using 16 bit
elements - a short int in C/C++, or a char in Java. Such
bitmaps are associated with each input test, representing the
targets that each test covers, and are also used for intermediate
results, representing the targets that still have to be covered.

Algorithm 2 shows counting the number of uncovered tar-
gets that testi contributes. testi.coveredj is the j-th element
in the bitmap that describes the targets covered by testi,
bitCount[] is a lookup table that is initialized to the count
of set bits in every possible element, and count is the number
of uncovered targets that testi can contribute.

This speed up can be combined with the priority criterion
above by using nElementsInBitmap bitCount[] tables, i.e.,
using bitCountj [new] instead of bitCount[new] in line 4 of
Algorithm 2.

1 count← 0
2 for j = 0 to nElementsInBitmap do
3 new ← testi.coveredj & uncoveredj
4 delta← bitCount[new]
5 count← count+ delta
6 end

Algorithm 2: Counting uncovered targets

In Section IV, and in Table VI in particular, we present
results that compare variants of the proposed algorithm, with
and without the improvements suggested above.

IV. EVALUATION

Interaction-based test-suite minimization has been applied
in several real-life cases within and outside of IBM. While
clearly we cannot share the exact details of these applications,
we do present two cases in some detail here as case studies.
We also give some results from several other applications.

A. Case Study – Healthcare

The first case study is in fact the real-life version of the
example in Section II. The system under test was a claims
processing system of several large healthcare providers. The
model for testing this system consists of 59 parameters, some
with only a few values, and some with hundreds. For this case,
both requirements presented in Section I are problematic. First,

187

the business logic in the system is very complex, therefore it is
practically impossible to correctly capture all the restrictions
between values in the model. Moreover, even if one could
specify these restrictions, generation of a test that corresponds
to an arbitrary combination of values to the parameters (even
if valid) requires generating all the corresponding data and is
therefore a highly laborious task that was infeasible in this
case. Due to these limitations, we opted for applying ITSM.

Since many of the parameters in this case study have a
very large number of values which cannot be abstracted in a
reasonable way, the standard practice of specifying coverage
requirements as t-way coverage of all parameters is infeasible,
since it will require too many tests in order to be fully satisfied.
Therefore, the following two types of coverage requirements
were used: a) explicit values and combinations of interest
which were defined manually; b) requirements such as “cover
the pairs of values for parameters A and B that correspond
to 90% of the claims”. A preprocessing step translated re-
quirements of the latter type into concrete requirements. The
reasoning behind the latter type is that for huge amounts of
data, such as the ones dealt with in this case study, it is often
very hard to manually consider all combinations of values for
parameters of interest. On the other hand, typically a small
number of such combinations cover the most common cases,
so by requiring to cover a certain top percent of the claims,
one can with small effort make sure that the most frequently
used combinations are covered, with a relatively small number
of tests.

Table VI summarizes the reductions achieved for seven
different healthcare providers. In all of them, claims were col-
lected over a certain period of time, and the ITSM technology
was used in order to select a subset of them that fully covers
all the interactions that are defined as required and are covered
by the complete sets. The table shows the number of selected
results for three variants of the greedy algorithm: a) the most
naı̈ve greedy algorithm (referred to as “Simple Greedy” in the
table), b) the less greedy algorithm, without improvements
(referred to as “Uniform”), and c) the improved algorithm,
including test prioritization (“Prioritized”). The magnitude of
reduction in all cases was from hundreds of thousands, and
even millions of claims (four million for the largest case)
to around eight-hundred with the most naı̈ve algorithm and
around three-hundred for the prioritized one. Computation
time for the prioritized algorithm is about 0.3 seconds per
100,000 input tests on a standard PC.

TABLE VI
ITSM RESULTS FOR SEVEN HEALTHCARE PROVIDERS

Total # Claims # Claims After ITSM
Simple Greedy Uniform Prioritized

280,885 709 311 270
374,102 830 352 304
438,560 736 342 296
572,519 814 364 313

1,250,549 820 343 297
3,984,877 945 329 289
4,008,088 857 311 273

Note that some preprocessing had to be performed in
order to translate the claims into parameters and values. One
example of a type of preprocessing operations is that of
abstraction, such as merging several different concrete values
into the more abstract one, e.g. replacing the patient’s concrete
age with child/adult/elderly. Another example is table-based
replacements, e.g., looking up a caregiver in a table and
replacing her code with the relevant parameter values.

As mentioned above, the input to ITSM is a set of claims
collected over a relatively long period of time. The reasoning
behind using ITSM for this case is that over such a period,
most relevant values and interactions of values are used at
least once, and will therefore be covered by the selected set.
In other words, in this case the potential coverage omissions,
as opposed to using CTD (which would have guaranteed
full coverage), are not a big concern, especially given the
significantly higher cost that CTD would have demanded,
which was unacceptable.

B. Case Study – Interface Panels

In the second case study a legacy computer terminal in-
terface was extended via web services to work in a modern
web browser environment. Because implementation was done
in a fashion that made use of the existing legacy GUI panel
definitions, the original requirement for testing was to verify
every existing legacy panel. With about 19,500 panels, this
testing requirement was unrealistic, especially since verifica-
tion required visual inspection of the resulting web page.

The most unique aspect of this example was that the 19,500
panels represented 100% of the test combinations. Thus we
had an existing test suite that was guaranteed to exercise all
necessary combinations. Because of this, the need to fully
enumerate all restrictions, as required in traditional CTD, was
not necessary. We relied on the existing test suite to naturally
reflect the restrictions. Having this set of all actually used test
combinations also removed any incentive to write additional
tests. In light of these two factors, the test challenge became
one of test suite minimization. One more consideration made
the example a good candidate for ITSM. The panels were well
suited for automation to be represented as tuples of parameter-
values.

The model that was built consisted of 86 parameters, with
a Cartesian product test space size of 4.72E21 combinations.
Amazingly, traditional pairwise analysis (with no restrictions)
reduced this to only 13 tests due to the fact that most
parameters were Boolean, having only 2 values.

Similar to the first example, existing tests were available as
several subsets. Each subset corresponded to the panels from
a different product that made use of the terminal interface
functionality. Table VII demonstrates the reduction achieved
for each of the sets. In this example, the analysis was also
taken one step further by performing an ITSM reduction on
the test suite combining all panels. The result of that analysis
appears as the last entry in the table. The table also shows the
percentage of all pairwise values that appear in the test suite
for each product. As expected, we see that a higher percentage

188

of coverage is achieved by the combined test suite. In addition,
an analysis of the tests selected in the combined case shows
that panels from many different products were chosen.

TABLE VII
ITSM RESULTS FOR THE INTERFACE PANELS CASE STUDY

Product ID # Panels % Covered # Selected
1 343 58.1 25
2 77 30.4 3
3 1132 61.1 27
4 48 50.2 10
5 22 30.4 3
6 204 44.8 14
7 4866 60.4 30
8 1065 58.8 32
9 39 32.5 6

10 532 44.4 12
11 213 36.1 13
12 3428 89.7 87
13 43 39.6 10
14 86 35.2 7
15 1132 43.4 16
16 2280 42.4 15
17 1177 41.2 19
18 90 34.5 7
19 2759 39.6 12

ALL 19536 91.2 92

As a side effect of the combined analysis we see a clue
about the number of restrictions that are associated with this
data. From the high coverage percentage of 91.2% we can
assume there are relatively few restrictions. Many restrictions
would normally reduce the number of valid combinations as
compared to the Cartesian product size to a percentage lower
than the 90% plus that we observe here.

While pairwise coverage could have been accomplished
with only 13 tests, we had no idea if those 13 violated
the unknown restrictions. The higher number of 92 tests
selected using ITSM were known not to violate restrictions.
This gives us an idea of the tradeoff in effort associated
with the technique. With the analytical pairwise optimization
offered by traditional CTD missing, a higher number of natural
test scenarios were required to achieve the same pairwise
coverage. In the end, while more tests had to be run, ITSM
still represented less effort than would have been required to
discover all of the restrictions associated with the model and
to code 13 new tests from scratch.

C. Additional Results

We also applied ITSM to several other projects from fi-
nancial and health-insurance domains. The charts in Figure 1
summarize the results. Each chart depicts the original num-
ber of tests vs. the number of tests selected by ITSM. On
average, ITSM reduced over 70% of the tests. The level of
interaction coverage obtained by the test plans is also plotted.
As expected, the coverage is identical before and after the
reduction.

Finally, we revisit the claim from Section III, that the naı̈ve
approach to ITSM, of reduction to a CTD problem, does not
scale. In Figure 2 we present computation time for solving

Fig. 2. Runtime of the prioritized algorithm vs reduction to standard CTD

ITSM, comparing between reduction to the BDD-based CTD
algorithm presented in [9] and the algorithm presented here.
It is easy to see that the BDD-based algorithm explodes at
problems that are orders of magnitude smaller than those
deemed problematic for the approach presented here. The
inputs in this experiment are random subsets of the test suites
mentioned in Section IV-A, and the coverage requirements are
to cover all values, and for half of the parameters, all pairs of
values. Similar behavior was observed on other input sets and
other coverage requirements.

V. RELATED WORK

Test suite minimization is a well-studied and widely used
approach for increasing the efficiency of regression test suites,
that tend to grow over time. This approach reduces the size
of test suites by eliminating redundant test cases, according to
some criteria, where the most common criterion is achieving
the same code coverage as the original test suite. Problems re-
lated to test suite minimization are those of test case selection
and test case prioritization. In test case selection, following
a set of changes in the system under test, relevant test cases
to run are identified. In test case prioritization, the test cases
are ordered in a way that is intended to achieve early fault
detection. A recent survey [14] studies these three problems
and lists 159 related papers.

For test minimization, most techniques described in the
survey use either general black-box requirements as the crite-
rion, or structural coverage-level criteria. However, there are
some other criteria described in the paper such as operational
abstraction, model-based minimization and more. In our work,
we choose to focus on interactions between values as the
minimization criterion, motivated by the studies such as [3],
[6], [10] that show that most software defects are caused by an
interaction of a small number of parameters. The survey in [14]
also states that only 8% of the proposed techniques were
applied on industrial-scale examples. As mentioned above, in
this paper we describe two industrial case studies, and survey
some results from other cases, all from real-life industrial
applications.

189

Fig. 1. Test suite minimization results for seven different real-life projects

Interaction-based test-suite minimization was introduced
in [5]. The test minimization problem defined there receives an
input test suite that already has 100 percent t-wise coverage.
In addition, all value combinations must be considered valid
by the test space, which means that all t-wise tuples between
the set of parameters must appear in the input test suite. In
reality, such test suites rarely exist, which significantly limits
the application of this minimization approach. Indeed, no case
studies were presented in [5]. We redefine the ITSM problem
as a minimization of an arbitrary set of tests, while allowing
any relationships between the different parameters of the test
space. We thus turn ITSM into a widely applicable approach,
as demonstrated by the case studies that we present.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present Interaction-based Test-Suite Min-
imization (ITSM) – a test suite minimization approach that
maintains the same coverage of value combinations as the
existing set (up to a certain user-supplied interaction level, t).
The approach is backed by an efficient and effective algorithm,
and evaluated using two case studies and further experimental
results.

In the future, we plan to further validate the approach
by studying actual fault detection reports and fault escape
reports, in order to substantiate the motivating claim regarding
fault discovery effectiveness. It is often impractical to actually
run the original suite and compare its fault detection to that
of the minimized one, therefore we plan to also take into
consideration escapes to the field.

Another interesting future direction is that of multiple test
suites. In the second case study, presented in Section IV-B
above, test suites for multiple products were considered, both
separately and in conjunction. In the latter case, where all tests
were considered as one test suite to be minimized, we observed
that our minimization technique indeed considered tests from
many different products. However, the distribution between
them was not even, and some products were completely left
out. In the future, we plan to extend our algorithm to better
reflect the distribution of tests from multiple separate sources.

Interaction-based test-suite augmentation, or enhancement,
is the process of adding tests to the existing test suite in order
to achieve full interaction coverage [5]. While it “suffers” from
the same requirements as CTD (need for precise restrictions,
and for generating tests), it does allow users to reuse their

190

existing tests and reduce the number of new tests to be
generated (typically at the price of a larger final test suite).
We plan in the future to compare the effectiveness of the three
approaches (CTD, ITSM and enhancement) in terms of test
suite sizes, fault detection and costs, as well as to explore
possibilities of combining these approaches.

Finally, ITSM requires that the set of existing tests be
represented as tuples of values to parameters. Often, however,
test suites are written in much less structured form, from
relatively structured spreadsheets to free text. Automatic, or
semi-automatic, tool support for translation of tests from such
unstructured forms into tuples of parameter values would be
significant for the applicability of the ITSM approach.

REFERENCES

[1] K. Burroughs, A. Jain, and R.L. Erickson. Improved quality of protocol
testing through techniques of experimental design. In IEEE International
Conference on Record, Serving Humanity Through Communications,
volume 2, pages 745–752, 1994.

[2] M. B. Cohen, J. Snyder, and G. Rothermel. Testing across configu-
rations: implications for combinatorial testing. SIGSOFT Softw. Eng.
Notes, 31(6):1–9, 2006.

[3] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-Based Testing in Practice. In
Proc. 21st International Conference on Software Engineering (ICSE’99),
pages 285–294. ACM, 1999.

[4] M. Grindal, B. Lindström, J. Offutt, and S. F. Andler. An evaluation of
combination strategies for test case selection. Empirical Softw. Engg.,
11(4):583–611, 2006.

[5] A. Hartman and L. Raskin. Problems and Algorithms for Covering
Arrays. Discrete Mathematics, 284(1-3):149–156, 2004.

[6] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software Fault Interactions
and Implications for Software Testing. IEEE Transactions on Software
Engineering, 30:418–421, 2004.

[7] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong. Empirical
studies of test-suite reduction. Journal of Software Testing, Verification,
and Reliability, 12:219–249, 2002.

[8] G. Rothermel, M.J. Harrold, J. Ostrin, and C. Hong. An empirical
study of the effects of minimization on the fault detection capabilities of
test suites. In Software Maintenance, 1998. Proceedings., International
Conference on, pages 34–43, 1998.

[9] I. Segall, R. Tzoref-Brill, and E. Farchi. Using Binary Decision
Diagrams for Combinatorial Test Design. In Proc. 20th Intl. Symp. on
Software Testing and Analysis (ISSTA’11), pages 254–264. ACM, 2011.

[10] K.C. Tai and Y. Lie. A Test Generation Strategy for Pairwise Testing.
IEEE Transactions on Software Engineering, 28:109–111, 2002.

[11] A. W. Williams. Determination of test configurations for pair-wise
interaction coverage. In Proceedings of the IFIP TC6/WG6.1 13th
International Conference on Testing Communicating Systems: Tools and
Techniques, TestCom ’00, pages 59–74, 2000.

[12] E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. Test set
size minimization and fault detection effectiveness: A case study in a
space application. In In Proceedings of the 21st Annual International
Computer Software and Applications Conference, pages 522–528, 1997.

[13] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Effect of test
set minimization on fault detection effectiveness. In Proceedings of the
17th international conference on Software engineering, ICSE ’95, pages
41–50, 1995.

[14] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, 2012.

191

