The HKU Scholars Hub The University of Hong Kong 7§ 1 e ,ﬁ_?ﬂ_. i ,Eé
i:?(f;ﬁ-‘_ & ;‘.:- § . . - - : ,- | d - :

|2 BAH
| #0| 54 |

1;};" ===/}
i

*w-“@

Title Adaptive random test case prioritization

Author(s) Jiang, B; Zhang, Z; Chan, WK; Tse, TH

Ase2009 - 24Th leee/Acm International Conference On

Gl Automated Software Engineering, 2009, p. 233-244

Issued Date | 2009

URL http://hdl.handle.net/10722/93070

IEEE / ACM International Conference on Automated Software
Rights Engineering. Copyright © Association for Computing Machinery,
Inc.

HKU CS Tech Report TR-2009-18

To appear in Proceedings of the 24th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2009), IEEE Computer Society Press, Los Alamitos, CA (2009)

Adaptive Random Test Case Prioritization”

T

Bo Jiang, Zhenyu Zhang W. K. Chan* T. H. Tse
The University of Hong Kong City University of Hong Kong The University of Hong Kong
Pokfulam, Hong Kong Tat Chee Avenue, Hong Kong Pokfulam, Hong Kong
{bjiang, zyzhang}@cs.hku.hk wkchan@cs.cityu.edu.hk thtse@cs.hku.hk

Abstract—Regression testing assures changed programs
against unintended amendments. Rearranging the execution
order of test casesis a key idea to improve their effectiveness.
Paradoxically, many test case prioritization techniques resolve
tie cases using the random selection approach, and yet random
ordering of test cases has been considered as ineffective. Exist-
ing unit testing research unvells that adaptive random testing
(ART) is a promising candidate that may replace random test-
ing (RT). In this paper, we not only propose a new family of
coverage-based ART techniques, but also show empirically
that they are statistically superior to the RT-based techniquein
detecting faults. Furthermore, one of the ART prioritization
techniques is consistently comparable to some of the best
coverage-based prioritization techniques (namely, the “addi-
tional” techniques) and yet involves much lesstime cost.

Keywor ds—Adaptive random testing; test case prioritization

I. INTRODUCTION

Regression testing is an important and yet time-
consuming software development activity [21][23]. It
executes an existing test suite (denoted by T) on a changed
program (denoted by P) to assure that the program is not
adversely affected by unintended amendments. For instance,
the retest-all strategy executes all available test cases in T
[15][20][21]. Test suites can be large and conducting
regression tests is tedious. To address this problem, existing
research studies consider different dimensions to make
regression testing more viable to software development.
Techniques may execute a subset of T on P (regression test
selection [23]), remove some test cases from T permanently
(test suite reduction [14]), assign the execution priority of the
test cases in T (test case prioritization [13]), or use a combi-
nation of these.

* © 2009 IEEE. This material is presented to ensure timely dissemination
of scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permis-
sion of the copyright holder. Permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copy-
righted component of this work in other works must be obtained from the
IEEE.

Test case selection and reduction may not execute P over
certain test cases of T. Although either strategy can make
regression testing faster to complete, the fault detection
ability of T is generally compromised. Test case prioritiza-
tion reorders T for execution to maximize a chosen testing
goal (denoted by G) [11][13][28]. G can be technical (e.g.,
maximizing the code coverage rate on a given version of the
software) or business-oriented (e.g., minimizing early human
participation in the testing phase). Test case prioritization
does not discard any test case, and hence the fault detection
ability of T is not compromised.

To present our work clearly, let us first define a few
terms. Suppose T = {t;, t,, ..., ty} is a regression test suite
with n test cases. A test sequence Sis an ordered set of test
cases. If t is a test case, and S=(s;, S,, ..., S, we define St
tobe (S, S, ..., S t). Furthermore, we use the notation T'S
to represent the maximal subset of T whose elements are not
in S A goal evaluation function g is a function that accepts a
test goal G and a test sequence S and returns a natural
number N which represents how well Sscores with respect to
G. Without loss of generality, we further assume the larger
such a number, the better Ssatisfies G.

When discussing test case prioritization techniques, we
distinguish two cases, namely, general prioritization and
version specific prioritization [7]. The former aims at select-
ing a test case ordering that will be effective (on average)
over a succession of subsequent versions of the software. It
is particularly applicable when the code bases of subsequent
versions are unavailable at the time of test case prioritization.
The later is concerned with a particular version of the soft-
ware for which we may wish to prioritize test cases in a
manner that will be most effective.

In this paper, we study general test case prioritization
because it is useful irrespective of the availability of change
information. For instance, a developer (or a software vendor)

¥ This research is supported in part by the General Research Fund of the
Research Grants Council of Hong Kong (project nos. 123207 and 716507)
and a discovery grant of the Australian Research Council (project no.
DP0984760).

* All correspondence should be addressed to Dr. W. K. Chan at Department
of Computer Science, City University of Hong Kong, Tat Chee Avenue,
Hong Kong. Tel: (+852) 2788 9684. Fax: (+852) 2788 8614. Email:
wkchan@cs.cityu.edu.hk.

Administrator
 HKU CS Tech Report TR-2009-18

may not release the source code of a changed version to
another developer (or the client) until the latter agrees to
accept the functionality of the changed version. In such a
scenario, we may conduct general test case prioritization on
the original version to speed up the process to see whether
there are faults that remain in the changed version.

Greedy algorithms [17] are a class of coverage-based test
case prioritization techniques that have been widely studied
in the public literature. Examples include the total-statement
coverage technique and the additional-statement coverage
technique [12]. Suppose T is the given regression test suite
and a test sequence Shas been selected using a technique in
this class. Such a technique picks t' from T/Sas the next test
case to add to S if St yields the maximum value in
evaluation goal. In other words, the technique selects t' €
T/Sif g(G, SY') 2 g(G,) for all xe T/S

We observe that in the class of greedy algorithms,
multiple test cases in T/S (say t' and t'’) may result in the
same maximum value in evaluation goal (that is, g(G, SY')
= g(G, SY'’)). In such a tie case, to the best of our
knowledge, almost all existing techniques [17] randomly
pick one test case (say t'') to resolve the tie (that is, to
construct St'*). The additional-statement prioritization tech-
nique [11] further reset the coverage information of the
remaining test cases when none of them improves the cover-
age of the test cases already selected. Although g is no longer
a monotonic function, for each round of selection of new test
cases, g could still be used as if it were monotonic. In any
case, the “universal” adoption of random selection to resolve
tie-cases remains unchanged.

Existing research shows empirically that random test case
prioritization (a.k.a. random ordering) can be ineffective. It
has been a long tradition to deem random ordering as the
lower bound control technique [9][10][11][12][13][17][22]
[24]. If random ordering is indeed ineffective, we would like
to ask the question: Why are other techniques not used to
resolve tie cases?

Chen et al. [2][3] propose the concept of Adaptive
Random Testing (ART) to replace random testing for test
case generation. The basic idea of ART is to spread the dis-
tribution of test cases as evenly as possible across the input
domain. ART improves over random testing by 40 to 50% in
terms of the number of test cases to reveal the first failure
(the F-measure) [3]. Chen and Merkel [5] further prove
mathematically that no technique can be better than random
by more than 50% of the F-measure. Thus, the improvement
by ART over random is close to the theoretical limit..

If ART can improve random testing in exposing faults
faster for test case generation, why do we not adapt it for test
case prioritization? Previous ART techniques for test case
generation use (black-box) input information to guide the test
case selection process, and yet the input spaces can take on
different forms (e.g., structured texts, video streams, images,
and objects). Although distance metrics that measure test
case distances in the input domain can be developed, the
design complexity to handle such rich kinds of inputs and

Program: Character Count Test Cases

main() { t1]2|t3[t4]t5]t6]t7
1 intlet, dig, other, c;
2 let=dig = other = 0; oo ofe|ofe]e
3 while((c=getchar()) I="0"'){ oo ofe|ofe]e
4 if((A'<=c && c<='Z") oflefo]|e]o]els
5 let+=1; ofe .
6 else if ('a'<=c && c<='z") elefef|e]e]e]e
7 let+=1; ol .
8 else if('0'<=c && c<='9") olefe|e]|e]e]e
9 dig+=2; /*Bug, should be dig+=1 */ ol .
10 else if(isprint(c)) ofefe]|e|o]e]e
11 other+=1;} ol
12 printf("%d letters, %d digits, %d others\n", clele]e]]|

let, dig, other); }

PASS (¥)/FAIL (x) STATUS: VI V]|x|x|vV|V]|x

Figure 1. Motivating Example.

compute such distances for real-life programs may be high.
On the other hand, white-box coverage information of the
previously executed test cases (e.g., which statements have
been exercised by which test cases) can be readily profiled,
and many existing test case prioritization techniques use
coverage information to achieve good prioritization results
[11][13]. We thus ask a follow-up question: Why is such low-
cost white-box information not used to spread test cases
across the code coverage space instead of the input space of
the program?

In this paper, we propose a set of ART prioritization
techniques guided by white-box coverage information. We
also conduct an empirical study to evaluate their effective-
ness. Rather than integrating with techniques with the class
of greedy algorithms, we choose to study them in a stand-
alone fashion so the observations drawn from the study will
be independent of the latter techniques.

The main contribution of this paper is twofold: (i) It
proposes the first set of coverage-based ART techniques for
test case prioritization. (ii) It reports the first empirical study
on ART-based prioritization techniques. The results show
that our techniques are superior to random ordering in terms
of earlier detection of failures. One of the studied ART
prioritization techniques is statistically comparable to the
best-studied coverage-based prioritization techniques (name-
ly, the additional techniques) in terms of the fault detection
rate, and is much more efficient.

We organize the rest of paper as follows: Section 2
presents a motivating study to show how white-box ART can
be effective in test case prioritization. Section 3 describes our
white-box ART test case prioritization techniques. Section 4
presents our empirical study as well as a results analysis.
Section 5 describes related work, followed by the conclusion
in Section 6.

II. MOTIVATING STUDY

This section shows how ART-based test case prioritiza-
tion can be effective in detecting failures. Figure 1 shows a
program with an off-by-one fault in statement #9. The source

Algorithm: prioritize Procedure: generate Procedure: select

Inputs: U: {u;, up ...} is a set of test|{Inputs: U:{uy, w, ...} is a set of test|Inputs: P: {pi, p2, ..} is a sequence of test cases
cases (untreated test suite) cases (untreated test suite) (prioritized test suite)

Output: P: {p1, P2, ...) is a sequence of{Output: C: {ci, ¢, ...} is a set of test C: {ci, o, ...} is a set of test case (candidate set)
test cases (prioritized test suite) case (candidate set) Output: s: test case (selected test case)

1. C:{cy,cy ...} is aset of test cases 1 S: {si, S2, ...} is set of statements 1. D:dpyq is a [P|x |C| dimensioned array

2. C <« generate(u) 2 S" {s", s, ...} is set of statements 2. Fori=1,2,..,|P|

3. P90 3 S'«— 0 3 Forj=1,2,.,|C|

4. s« sdect(P,C) 4 randomly select u; from U 4. dij < fi (pi, ¢))

5 U—U\ {s} 5. set S as the statements covered by u; |5, k«f;(D)

6 P (D1, P25 > Do S) 6. If S'U S = S' then goto step 10 6. Returncg

7 If U # @ then goto step 4 7 S'«-S'us

8' Return P 8 C—CuU {u}

’ 9. goto step 4
10. Return C

Figure 2. The White-Box ART Algorithm.

code is on the left and seven test cases with their statement
coverage information are on the right.

A. Greedy Techniques

Total-statement (total-st) and additional-statement (addtl-
st) [11][13] are two representative techniques in the class of
greedy algorithms. The former prioritizes a test suite T in
descending order of the number of statements covered by
individual test cases. The latter prioritizes T in descending
order of the number of additional statements covered by
remaining test cases (relative to the test cases already
selected and with a reset of the coverage information if no
more coverage can be gained by any remaining test cases).
Either technique resolves tie cases randomly.

For instance, using total-st, a test sequence (15, t6, t1, t2,
t3, t4, t7) can be generated for our example. Since the
number of statements covered by the failure-causing test case
t7 is less than the test cases tl, t2, t5, and t6, the greedy
algorithms cannot select it earlier than the others. Similarly,
using addtl-st technique, one possible test sequence is (2, t5,
t4, t6, 13, t1, t7). Owing to its greedy nature, the first test case
(even with reset) will always be one of t1, t2, t5, or t6.

B. ART-based Techniques

Let us consider a white-box ART test case prioritization
that each time selects the next test case (from a candidate set
of not yet selected test cases) that is farthest away from the
already prioritized test cases. To measure the distance of two
test cases, we first associate each test case with a set of
statements exercised by the test case (in a previous version).
We then use the Jaccard distance of the two set as the
distance of two test cases. The Jaccard distance between
two set (of statements) A and B is defined as D(A, B) =
1 — |JAn B|/|A U B. For instance, the distance between t1
and t2 is 0 because they cover exactly the same set of
statements.

For illustration purpose, we further suppose that the size
of the candidate set is 2, and initially the technique randomly
generates a candidate set C, say, {t1, t4}. Since initially, the
constructing test sequence S is empty, the technique ran-
domly selects a test case, say t1, from C. Thus, S becomes

(t1). The technique then randomly generates a new candidate
set, say {t4, t5}.

Since the distance between t1 and t5 is 1 — 8/10 (which
is, 2/10) and the distance between tl and t4 is 1 — 7/10
(which is 3/10) and is larger than 2/10. The technique picks
t4, and Sbecomes (t1, t4). Suppose that in the next round, the
technique builds a new candidate set {t6, t7}, and it wants to
find out which test case is farthest away from any test cases
in S There are several strategies. For instance, we may
choose to maximize the minimum, average, or maximum
distance between a candidate test case and any test case in S
The distance between t1 and t6 is 2/10, that between t4 and
t6 is 1 — 7/10 = 3/10, that between t1 and t7 is 3/10, and that
between t4 and t7 is 0. The minimum, average, and maxi-
mum distances between t6 and (t1, t4) are 2/10, 5/20, and
3/10, respectively. The minimum, average, and maximum
distances between t7 and (tl, t4) are 0, 3/20, and 3/10,
respectively. To maximize the minimum distance, the
technique can choose t6. To maximize the average distance,
the technique can also choose t6. To maximize the maximum
distance, the technique can choose either t6 or t7.

We observe from the example, coverage-based ART
techniques have two advantages. First, they cluster the test
cases into several groups according to certain distance
metrics. Each time, an ART-based technique prefers
selecting test cases from an uncovered nonparametric parti-
tion (relative to the test cases already selected). Second, it
transforms test case prioritization to a search process for a
globally optimal solution. The randomness inherent to ART
helps the prioritization algorithm to get out of the local
maximum (often faced by the greedy algorithms). As shown
in the next section, the randomness of our technique comes
from the random selection of test cases to build the candidate
test set while the “adaptive” is achieved by the adoption of
coverage information to guide prioritization.

III. ART FOR TEST CASE PRIORITIZATION

In this section, we present our family of ART-based test
case prioritization techniques.

A. White-Box ART Algorithm

The ART algorithm proposed in [3] for test case genera-
tion needs the success and failure information of the test
cases already selected. In this study, since we want to present
a family of ART techniques for test case prioritization in
general (rather than specific to a particular amended version
of a program), we avoid using the success and failure
information of a test case. In our ART algorithm, therefore,
we aim at selecting a test case farthest away from all
prioritized test cases using coverage information.

Our algorithm, as shown in Figure 2, is summarized as
follows: The main algorithm is prioritize, which prioritizes a
given set of test cases. It iteratively builds a candidate set of
test cases and, in turn, picks one test cases out of the candi-
date set until all given test cases have been selected. It
invokes a procedure generate to build the candidate set. The
generate procedure constructs a set of not-yet-selected test
cases iteratively, by randomly adding remaining test cases
into the candidate set as long as they can increase program
coverage and the candidate set is not yet full. To decide
which candidate test case to be selected, the prioritize
algorithm calls another procedure select. The latter requires a
function f; that calculates the distance between a pair of test
cases and a function f, that returns the index of the selected
test case farthest away from the prioritized set. Function f; in
the experiment (Section 5) uses the Jaccard distance between
two test cases based on the coverage constructs used.
Suppose the set of statements (or functions or branches)
covered by test case pjandc; are S(pj) and S(¢;),
respectively. We have

f1(Pj,Ci): 1-1Sp) NS/ |5(Pj) U S(c)l

In Figure 1, for example, the number of statements covered
by both test case tl and test case t5 is 8, and the number of
statements covered by either test case tl or test case t5 is 10.
The resulting Jaccard distance between tl and t5 will be
1-8/10=0.2.

Function f, can be defined by one of the following
means, as explained in Section B(3) below.

St ity = mRlmy A O
_J)js.t. avg d;; = max { avg d;;} (2
f,(D) =117 osi§|P| Y 05js|C|{osis%P| i) @
Jet ma = gy) ®

For a test suite having m test cases and a program having
N statements, the time complexity of the algorithm is O (m?)
in the best case and O (m3n) in the worst case.

B. Featuresof ART Techniques

In this section, we discuss several features of the white-
box ART algorithm above.

1) Sze of candidate set: The size of the candidate set
proposed by Chen et al. [3] is 10, which is a limit based on
empirical findings. In our algorithm, we build the candidate
set iteratively by randomly selecting one test case into the

candidate set every time, until the candidate set is full or the
selected test case cannot increase the statement, function, or
branch coverage of the candidate set. In other words, unlike
many existing ART techniques, ours is non-parametric with
respect to the size of the candidate set. In our experiment,
we use statement coverage for evaluation.

2) Test case distance f; : There are many ways to
measure the distance between two test cases. Finding suita-
ble similarity metrics is a research topic by itself. In our
experiment, we use the Jaccard distance of the two sets of
coverage information to measure the distance between two
test cases.

3) Test set distance f,: The procedure select calls f, to
find a candidate test case that is farthest away from the set
of test cases already selected. Here lies the problem of how
to define “farthest away”. We have formulated several strat-
egies: Following Chen et al. [3], we choose a test case that
has the largest minimum distance with the test cases in a
given set, as shown by equation (1) in the definition of f,.
Following Ciupa et al. [8], we choose a test case that has the
largest average distance with the test case in a given set, as
shown by equation (2) in the definition f,. Another possible
strategy is to choose a test case that has largest maximum
distance with the test cases in the candidate set, as in
equation (3). There can be other strategies to measure the
similarity between two sets of test cases, which will be
interesting to be studied further.

4) Level of coverage information: Our techniques use
coverage information to compute the distance between a test
case in the prioritized set and a test case in the candidate set.
There are at least three levels of coverage information:
statement, function, and branch.

TABLE 1. PRIORITIZATION TECHNIQUES CONSIDERED IN THE PAPER.

Ref. Name Descriptions

Tl random Random prioritization

T2 total-st Total statement

T3 total-fn Total function

T4 total-br Total branch

T5 addtl-st Additional statement

T6 addtl-fn Additional function

T7 addtl-br Additional branch

Ref. ART Level of Coverage | 1o oy pistance (f,)
Infor mation

T8 |ART-st-maxmin Statement Equation (1)

T9 | ART-st-maxavg Statement Equation (2)

T10 | ART-st-maxmax Statement Equation (3)

T11 |ART-fn-maxmin Function Equation (1)

T12 | ART-fn-maxavg Function Equation (2)

T13 |ART-fn-maxmax Function Equation (3)

T14 |ART-br-maxmin Branch Equation (1)

T15 | ART-br-maxavg Branch Equation (2)

T16 |ART-br-maxmax Branch Equation (3)

C. ART Prioritization Techniques

We propose nine ART techniques. The algorithm in
Figure 2 is used as the basis. Each technique uses a different
level of coverage information and a different test set distance
function f,. Table I lists all the ART techniques (T8 to T16)

as well other prioritization techniques considered in this
paper (T1 to T7).

IV. EMPIRICAL STUDY

A. Research Questions

We study four research questions in the empirical study.

RQ1: Are ART-based techniques more effective than
random ordering? The answer to this question will help us
decide whether it would be helpful to use ART rather than
random ordering for test case prioritization (or even for tie-
breaking when pairing up with other techniques).

RQ2: Do different levels of coverage information have
significant impact on ART techniques? The answer to this
question will help us decide which level of coverage
information to use for ART techniques. It would be best if
the least costly level can be used to achieve the most
effective result. However, if it is not the case, we would like
to know the best option on hand.

RQ3: Does different definitions of test set distance have
significant impact on ART techniques? The answer to this
question will help us decide which distance metric to use for
ART techniques. Similarly to RQ2, it would be best if the
least costly metric could be found to be the most effective. Is
this the case?

RQ4: Can ART techniques be as effective as coverage-
based techniques? The answer to this question will tell us
whether ART can be a promising technique for test case
prioritization in that it can perform as effectively as tradi-
tional best prioritization techniques. Is such a technique low
cost as well?

TABLE II. SUBJECT PROGRAMS.

Subject Faulty LOC' | Test Pool Size
Version
tcas 41 133-137 1608
schedule 9 291-294 2650
schedule2 10 261-263 2710
tot_info 23 272-274 1052
print_tokens 7 341-342 4130
print_tokens2 10 350-354 4115
replace 32 508-515 5542
flex 21 8571-10124 567
grep 17 8053-9089 809
gzip 55 4081-5159 217
sed 17 4756-9289 370

B. Peer Techniques for Comparison

In our empirical study, we compare the ART prioritiza-
tion techniques with random ordering and six existing
coverage-based prioritization techniques (from [12]).

The total statement (total-st) test case prioritization tech-
nique sorts test cases in descending order of the total number
of statements covered by each test case. In case of a tie, it
selects the involved test cases randomly. The total function

' We use the tool “SLOCCount” (available at http:/www.dwheeler.
com/sloccount) to count the executable lines of code.

(total-fn) and total branch (total-br) test case prioritization
techniques are the same as total-st, except that it uses
function and branch coverage information instead of state-
ment coverage information [11].

The additional statement (addtl-st) prioritization tech-
nique selects, in turn, the next test case that covers the maxi-
mum number of statements not yet covered in the previous
round. When no remaining test case can improve the state-
ment coverage, the technique will reset all the statements to
“not covered” and reapply addtl-st on the remaining test
cases. When more than one test case covers the same number
of statements not yet covered, it just selects one of them
randomly. The additional function (addtl-fn) and additional
branch (addtl-br) test case prioritization technique are the
same as addtl-st, except that it uses function and branch
coverage information instead of statement coverage informa-
tion[11][12] [13].

C. Subject Programs and Test Suites

We use the Siemens suite of programs, downloaded from
SIR [9] at http://sir.unl.edu, as subject programs. These pro-
grams were originally created to support research on data-
flow and control-flow test adequacy criteria [15]. Since the
Siemens programs are small, we also use four real-life UNIX
utility programs with real and seeded faults (download from
http://sir.unl.edu) in the experiment. Table II shows the
descriptive statistics for all the subject programs.

We use a UNIX tool, gcov, to collect dynamic program
coverage information for prioritization. Following [11], we
exclude the faulty versions whose faults cannot be revealed
by any test case as well as the faulty versions whose faults
can be detected by more than 20% of the test cases. Besides,
we also exclude those versions that are not supported by our
experimental platform. All remaining faulty versions are
used in the experiment.

D. Experimental Environment

We carry out the experiment on a Dell PowerEdge 1950
server serving a Solaris UNIX. The server is equipped with 2
Xeon 5355 (2.66Hz, 4 core) processors with 8GB physical
memory.

E. Effectiveness Metrics

In this paper, we measure how quickly a test suite can
detect faults. Following [13], we use APFD as the metrics for
the rate of fault detection. APFD measures the weighted
average of the percentage of faults detected over the life of
the suite. Let T be a test suite containing n test cases and let
F be a set of m faults revealed by T. Let TF; be the first test
case in the reordered test suite T' of T that reveals fault i. The
APFD value for T is given by the following equation from
[13]:

APED = | _ TF1#+TFo++TFm | 1

nm 2n

O |

0.51 b

random
total-st
total-fn
total-br
addtl-st [
addtl-fn
addtl-br
ART-st-maxavg
ART-fn-maxmax [
ART-br-maxavg [
ART-br-maxmin -

ART-fn-maxavg [
ART-fn-maxmin -

ART-st-maxmin [
ART-st-maxmax [

ART-b!

Figure 4. APFD Distributions for All Siemens Programs.

F. Experiment and Discussions

The experiment involves seven small-sized Siemens
programs and four real-life medium-sized UNIX utility pro-
grams. Following [20], we use the branch-coverage-adequate
test suites provided by SIR to conduct the test case prioritiza-
tion. There are about 1,000 small test suites and 1,000 large
test suites. Since most of the small test suites can only kill a
small portion (less than 20%) of all the faulty versions, it
makes the comparisons among techniques much less signifi-
cant. Hence, we adopt in our experiment the large test suites,
which can kill about more than 55% of all faulty versions.
For the UNIX programs, we generate 1000 test suites
iteratively from the test pool: In each iteration, we randomly
select a test case and add it to the suite as long as it can
increase the branch coverage of the suite. The process stops
when we have covered all the branches or when the new test
case can no longer improve the branch coverage.

Since all the ART techniques are based on random
selection, we repeat each of them 50 times to obtain averages
that can portray typical performance. To reduce the huge
computation cost in the experiment, we randomly select 20
suites from all the available 1000 test suites for each of the
Siemens programs and UNIX programs. Thus, we conduct a
total of 1000 prioritizations for each ART technique.

1) Is ART better than random? In this section, we
analyze the data to answer the research question whether
ART techniques are more effective than random ordering.

For each technique, we calculate the APFD results across
all the faulty versions and draw box-and-whisker plots for
the Siemens and UNIX programs, as shown in Figure 3 and
Figure 4, respectively. For each box-whisker plot, the X-axis
represents prioritization techniques and the y-axis represents
their APFD values for all faulty versions. The lines in the
boxes indicate the lower quartile, median, and upper quartile
values. Boxes whose notches do not overlap mean that the
medians of the two groups differ at the 5% significance
level.

Figure 3 shows the box-whisker plots across all the
Siemens programs. We observe that, in general, all the

adaptive random prioritization techniques outperform the
random ordering. Moreover, one can confidently conclude
the medians of ART techniques differ from random ordering
at the 5% significance level based on the non-overlapping of
the notches.

Figure 4 shows the box-whisker plots for all the UNIX
programs. We observe that ART prioritization performs
better than both random ordering and the total techniques.
The traditional total (statement, branch, function) prioriti-
zation techniques perform well on Siemens programs but not
so on medium-size UNIX utility programs. (Similar results
are also reported in [10][13].)

We also show the performance of individual Siemens and
UNIX programs in Figure 5 and Figure 6, respectively. We
observe similar results. For all the Siemens programs except
schedule2, ART prioritization techniques perform better than
random ordering significantly in terms of medians. For
schedule2, we observe that three ART techniques (ART-st-
maxavg, ART-br-maxavg, and ART-br-maxmin) perform
better than random ordering while other ART techniques are
comparable to random.

Having seen the box-whisker plots, we further conduct
one-way analyses of variances (ANOVAs) to verify whether
the means of the APFD distributions for different techniques
do not differ significantly. For all and each of the subject
programs, the ANOVAs return a p-value much less than
0.01, which successfully rejects the null hypothesis at 1%
significance level. For instance, the p-value for all Siemens
programs is 0.00136. We will not discuss the p-values indivi-
dually owing to space limit.

The four UNIX utility programs give similar results.
From Figure 6, we find that the ART prioritization tech-
niques in general perform better than random ordering. The
p-values returned from ANOVAs also confirm that the
means of various techniques differ significantly from random
ordering.

We further conduct multiple comparisons to find those
techniques whose means differ significantly from each other
at the 5% significance level. The top line in Figure 7
represents the result of random ordering, which we use as a
benchmark to compare with other techniques. The other solid
lines represent the results of the techniques whose means
differ significantly from random ordering, while the gray
lines represents those of techniques comparable to random.

el

D
R Dl

]
v

B &

. -
DS
(T
' [.:GT -

4

random
total-st
total-fn
total-br
addtl-st
addt-fn
addtl-br
ART-st-maxavg
ART-st-maxmin
ART-st-maxmax
ART-fn-maxavg
ART-fn-maxmin
ART-fn-maxmax
ART-br-maxavg
ART-br-maxmin
ART-br-maxmax

Figure 3. APFD Distributions for All UNIX Programs.

XBWXeW-1q-1 4y

UILIXEW-G- LY

Bhexew-ig-] Yy

XeWNXeW-uj- 4y

UILIXEW-UJ-| MY

Brexew-uj-| Hy

XEUXeWHS-1 Yy

UIXBW-}S- 1YY

b 1514V

tcas

1q-pppe

W-ippe

is-hppe

g-|el0p

U-[ejo)

1s-[e10}

wopues

0.9
0.85
0.8f
0.6}

i

1
0.95[
o9 T
0.75

0.5

XeWXew-ig- 4y

UIXBU-IG- LY

Bexew-1g-| oy

XeWNew-Uj- 4y

UIWXBW-UJ-1 4

Baexew-uj-| ¥y

XeUXeWw-s-1 4y

ey L

u

e}

Brexew-js-1y

e

o

g-Rppe (2]
U-pppe
Is-hippe
Jq-jeio}
U-fejo}

is-e0}

wopues

XeWNew-1g- L4y

UIWXBW-1G- 4y

Baexew-ig-| oy

XeWXBW-Uj-| 4y

UIWXeW-U)-| 4y

Bexew-u- 4y

XEWXBW-)S-1 ¥y

UILUIXEW-)S-1 HY

Bhexew-)s-| ¥y

1q-ppe

Up-pppe

is-lippe

Jq-lejop

Up-fejop

is-[ejo}

wopues

0.95f

0.75f

XeWNew-1g- 4y

UIWXBW-1G- 4y

Baexew-ig-1yy

XEWXEBW-Uj-| 4y

UIWXeW-U)-| 4y

Bexew-uj- 4y

XEWXBW-IS-1 ¥y

UILIXEWHS-1HY

6y 18-14Y

1q-hppe

Up-pppe

is-ippe

Jq-lejop

Up-fejop

is-[ejo}

wopues

0.96

0.88[

.
8§
5 (=}
Csanfen

0.86 [

0.84[

0.82[

0.8

replace

tot_info

NEWXEW-1q-1 Y

UIXBW-1G-| 4y

Baexewr-ig-1 Hy

1Y

-1 HY

BAexew-uj-] Yy

IXBUIXEWHS- 1YY

UILXBUHS- 1YY

Bhexew-js- 4y

1q-ppe

U-fippe

is-ippe

g-lejop

U-ejoy

1s-[ejo}

wopues

0.95["

09

-xewxew-ig-1 4y

Junwixew-ig-1 4y

< Brexew-ig-1 ¥y

“xewxew-up-1 4y

Juiuxew-ug-1 4y

| Brexew-uj- 4y

|xewxew-js-1 4y

- uwxew-js- 14y

+ BAexew-}s- Hy

4 a-hppe

4 U-hppe

4 ishppe

Aq-fejoy

Up-{ejo}

is-fejo}

wopues

0.88[

print_tokens

print_tokens2

schedule2

0.5

-
Jud

o
<

UIWXBW-IG-1 Y

BAexew-ig-1 4y

XBWXBW-U)-] 4y

UILXEW-U)- MY

Brexew-uj-| 4y

XeWXew-)s- 14y

UlWXeW-}s-1 4y

Brexew-js-1 4y

q-pppe

U-fippe

1s-hppe

Jq-1ejo}

Uj-[ejo}

1s-[ej0}

wopuel

Figure 5. APFD Distributions for Siemens Programs.

[

e o o
BN W
T T T
T }4 "
+
k
+
»
+ +
L L L

07 - - i - b

06|

random
total-st
total-fn
total-br
addtl-st
addtl-fn
addtl-br
ART-st-maxmin
ART-st-maxmax
ART-fn-maxavg
ART-fn-maxmin
ART-br-maxavg
ART-br-maxmin
ART-br-maxmax

“,3 ART-st-maxavg
©
ARTH

random
total-st
total-fn
total-br
addtl-st [
addt-n
addtl-br
ART-st-maxavg
ART-st-maxmin [
ART-st-maxmax [
ART-fn-maxavg [
ART-fn-maxmin -
ART-fn-maxmax -
ART-br-maxavg [
ART-br-maxmin
ART-br-maxmax |

sed

¢
O
O

e
X b
bal

0.4

random
total-st
total-fin
total-br
addtl-st
addtl-fn
addt-br
ART-st-maxavg
ART-st-maxmin
ART-st-maxmax
ART-fn-maxavg
ART-fn-maxmin
ART-fn-maxmax
ART-br-maxavg
ART-br-maxmin
ART-br-maxmax

grep

o
©
T
I

random
total-st
total-fn
total-br
addtlst
addt-fn
addtl-br
ART-st-maxavg
ART-st-maxmin [
ART-st-maxmax |
ART-fn-maxavg [
ART-fn-maxmin [
ART-fn-maxmax [
ART-br-maxavg [
ART-br-maxmin
ART-br-maxmax [

flex

Figure 6. APFD Distributions for UNIX Programs.

The results of the comparisons show that for all Siemens
programs except schedule2, the means of APFD values for
ART prioritization techniques are higher than that of random
ordering. For the UNIX programs, when we compare ART
techniques with random ordering, we find that all the tech-
niques using “maxmin” (equation (1) for f,) have higher
mean APFD values than random ordering while other ART
techniques are comparable to random.

Owing to space limitation, we will only show in Figure 7
the results of multiple comparisons across all Siemens and
UNIX programs. Note here that the x-axis represents APFD
values and the y-axis represents different prioritization
techniques. We observe from Figure 7 that all ART prioriti-
zation techniques except ART-fn-maxmax have mean APFD
values significantly higher than random ordering.

If we compare the means of all APFD values of individ-
ual ART techniques with that of random ordering, we find
every ART technique can improve over random by 5 to 10%.
At the same time, the best greedy coverage-based technique
(namely, additional branch) can improve over random by up
to 11%. Thus, the best ART technique (namely, ART-br-
maxmin) and the best coverage-based technique can achieve
almost the same improvements over random ordering.

To conclude, our experiment shows that, in general, the
ART prioritization techniques do perform significantly better
than random ordering across all subject programs.

2) Do different levels of coverage information have
significant impact on ART techniques? In this section, we
attempt to answer the research question whether different
levels of coverage information have a significant impact on
white-box ART techniques.

To compare the impacts of different levels of coverage
information on APFD results of the ART prioritization tech-
niques, we first categorize the techniques into three main
groups according to their definitions of test set distances.
The “maxmin”, “maxavg” and “maxmax” groups, respec-
tively, mean that we iteratively select a test case from the
candidate set that maximizes its minimum, average, and
maximum distances with the selected test set.

We then categorize each group into three subgroups
according to the level of coverage information used, namely
statement, function, and branch. For every subject program,
we conduct multiple comparisons between each of the
{statement:function, branch:function, branch:statement}
pairs of subgroups. If the mean APFD value of first subgroup
is higher (lower, respectively) than that of the second
subgroup at 10% significance level, we put a “>" (“<”) sign
at the corresponding cell. In case there is no significant
difference between their mean values, we put an “=" sign in
the cell. The results are in Table 1. For schedule2, for
instance, when the test set distance is “average”, the “>" sign
in the first data row indicates that the mean APFD values of

statement-level ART techniques are statistically higher than
those of function-level techniques.

From Table 111, if we examine all the rows for “br:fn”?,
there are 12 “>” signs and 21 “=" signs, which means that
branch-level techniques always perform better than or equal
to function-level techniques. For the rows “br:st”, we can
see 29 “=" signs and 4 “>” signs, which means that branch-
and statement-level techniques are generally comparable to
each other. For “st:fn”, there are 23 “=" signs, 9 “>” signs,
and only one “<” sign, which means that statement-level
techniques are general better than function-level techniques.

Furthermore, the impact of coverage information is more
evident on small-sized programs than on medium-sized pro-
grams. The “maxmin” group is more sensitive to different
levels of coverage information than the “maxavg” and
“maxmax” groups.

In conclusion, different levels of coverage information do
have impact on the ART prioritization techniques. In general,
branch-level techniques are comparable to statement-level
techniques and both of them are more effective than
function-level techniques.

random
total-st L
total-fn F
total-br
addtl-st -
addtl-fn -
addtl-br +
ART-st-maxavg |
ART-st-maxmin
ART-st-maxmax |-
ART-fn-maxavg -
ART-fn-maxmin |-
ART-fn-maxmax |-
ART-br-maxavg |-

ART-br-maxmin |-

T T S S S S S R R B R

ART-br-maxmax -

076 078 o8 082 0.84 0.86 088 0.0 0.92 0.94
11 groups have means significantly different from random

Figure 7. Comparisons with Random Ordering for All Programs.

TABLE III. COMPARING DIFFERENT LEVELS OF COVERAGE INFORMATION.

Program Size Small M edium-Sized
c o | o

& 8 8 % % %) 218 E) é o o

gs | 2 |E|E|EE5]5]5)58 8¢
A S ol S| lo|lo|lel =
o S |23 1Tl E|E
O o ‘5_

sgifn |= = = = > > >|= > = =

maxmin | br:ifn = > = > > > >]|> > = =

brrst = > = > = = == = = =

st:fn = > = = = = > = = = =

maxavg | br:ifn = > = = = > >]= = = =

br:st > = = = = == = = =

sgifn |= = < = > > >]= = = =

maxmax | br:ifn = = = = = > >]= = = =

br:st = > = = = == = = =

3) Do different definitions of test set distances have
significant impacts on ART techniques? In this section, we
would like to find out whether we should select a new test
case from the candidate set to maximize the minimum,

% That is, comparing the branch and function levels. Other labels in
the same column can be interpreted similarly.

average, or maximum distance between the candidate test
case and the set of test cases already selected.

Similarly to the last section, to compare the impacts of
test set distance on APFD results of the ART prioritization
techniques, we first categorize the techniques into three
groups according to their levels of coverage information,
namely statement, function, and branch. We then categorize
each group into three subgroups according to their defini-
tions of test set distance, namely “maxmin”, “maxavg” and
“maxmax”. For every subject program, we conduct multiple
comparisons between each of the {maxmin:maxavg,
maxavg:maxmax, maxmin:maxmax} pairs of subgroups.
Similarly to Table III, if the mean APFD value of first group
is higher (lower, respectively) than that of the second group
at 10% significance level, we put a “>” (“<”) sign in the
corresponding cell. In case there is no significant difference
between their mean values, we put an “=" sign in the cell.
The results are shown in Table I'V.

If we examine all of the rows for “maxmin:maxavg” in
Table IV, we find 11 “>” signs, 21 “=" signs and only one
“<” sign, which means that “maxmin” test set distance is
noticeably better than “maxavg”. When we consider
“maxmin:maxmax”’, we can find 11 ‘“>” signs and 22 “=”
signs, which implies that the mean APFD values for
“maxmin” are always higher or equal to those for
“maxmax”. For “maxavg:maxmax”, there are 27 “=" signs, 4
“>” signs, and 2 “<” signs, which implies that the mean
APFD values of “maxavg” and “maxmax” are comparable.
We also observe that the statement group and the branch
group are more sensitive to changes in test set distances.

TABLE IV. COMPARING DIFFERENT DEFINITIONS OF TEST SET DISTANCE.

! M edium-
Program Size Small :
g Sized
o N
“— c Q| »
5 = 8 2 ° ol ® é 5
o 2 IS S|3|&|€ 3|2 kS |3 53
3 & g e8|zl 2l 8|2
s £ Sl<s|=|2]lo|lz]| @
- 9 s a1 = | =|£|c
3 S a S| =
o Tl
maxmin: | _ s = == > s =
maxavg
<t maxavg: > > > = < < = = = = =
maxmax
maxmin: | _ _ o _ _ _ _|l- s s> =
maxmax
maxmin: | _ _ _ _ _ _ _|_- - - .
maxavg
fn maxavg: | - _ _ _ _ _ _|_- _ _ _
maxmax
maxmin: > = = = = = = = = > =
maxmax
maxmin: | _ _ o o o _|- s s =
maxavg
maxavg.
br g = > = = = = = = = = =
maxmax
maxmin: > > = > = = == > > >
maxmax

In conclusion, for different test set distance definitions,
the “maxmin” group has higher mean APFD values than
either the “maxmax” or the “maxavg” group. The “maxmax”
and the “maxavg” groups are comparable to each other.
Ciupa et al. [8] use “maxavg” as the test set distance for
applying ART to the test case generation in object-oriented
software. Our findings above may indicate that the use of
“maxmin” as test set distance may further improve the
results. More experiments are required to confirm the
conjecture.

Taking the discussions in last section and this section
together, we find that the branch-level coverage information
and “maxmin” test set distance definition are the best options
for the respective features in ART test case prioritization
techniques. Intuitively, therefore, the ART-br-maxmin
should be the best ART prioritization technique.

A careful analysis of Figure 3 and Figure 4 will further
confirm this conclusion. As shown in Figure 3, ART-br-
maxmin is better than the entire function group of ART
techniques and comparable to any other ART techniques. In
Figure 4, ART-br-maxmin technique is comparable to the
ART-st-maxmin and ART-fn-maxmin techniques, but better
than any other ART techniques.

random
total-st
total-fn
total-br
addtl-st
addtl-fn
addtl-br
ART-st-maxavg

ART-st-maxmin

ART-st-maxmax
ART-fn-maxavg
ART-fn-maxmin
ART-fn-maxmax
ART-br-maxavg

D 4

T T T T T T T T T T T T T T

ART-br-maxmin

ART-br-maxmax —_— q

8 0.82 084 0.86 0.88 0.9
6 groups have means significantly different from ART-br-maxmin

Figure 8. Multiple Comparisons for ART-br-maxmin on Siemens.

4) How does ART-br-maxmin compare with coverage-
based techniques? From the discussions above, we know
that ART-br-maxmin is the most effective technique in the
proposed family of ART techniques. In this section, we are
interested in how ART-br-maxmin performs when com-
pared with the family of coverage-based prioritization tech-
niques.

random
total-st
total-fn
total-br
addtl-st
addti-fn
addti-br
ART-st-maxavg [
ART-st-maxmin |
ART-st-maxmax |-
ART-fn-maxavg [
ART-fn-maxmin |-
ART-fn-maxmax |-
ART-br-maxavg |
ART-br-maxmin [

A S S S S S S S S S N R R

ART-br-maxmax [

04 05 06 07 08 09 R
8 groups have means significantly different from ART-br-maxmin

Figure 9. Multiple Comparisons for ART-br-maxmin on UNIX.

Basically, the ART prioritization techniques should only
be compared with the total prioritization techniques rather
than with the additional techniques. Current ART tech-
niques have not incorporated the concept of “reset” into
their algorithms, but simply select the farthest test case from
the prioritized test set every time. It is possible that the
prioritized test set has already achieved the maximal
possible coverage for a given test suite, and all the remain-
ing test cases have the same (maxmin, maxavg, or maxmax)
distance from the prioritized test set. In such a scenario, it
might be better to “reset” the prioritized test suite and
continue to select test cases as if the prioritized test suite
were empty. We plan to study the “reset” concept on top of
the ART techniques and explore their effectiveness in future
work. In this paper, we will continue to compare ART-br-
maxmin with both the total and additional techniques.

We observe from Figure 5 and Figure 6 that ART-br-
maxmin performs better than the total techniques on UNIX
programs, and ART-br-maxmin is comparable to the total
techniques for Siemens programs. We further use hypothe-
sis testing to compare their means and confirm that ART-br-
maxmin is comparable to the total statement and total
branch techniques and better than the total function tech-
nique for Siemens programs, as shown in Figure 8, and that
ART-br-maxmin performs significantly better than any total
technique on UNIX programs, as shown in Figure 9.

TABLE V. TIME COMPARISONS OF DIFFERENT TECHNIQUES.

gzip
sed
flex
grep

tot-info

Program
schedule
schedule2
tcas
replace
print_tokens
rint_tokens2

p

random 0.01 0.01]0.01|0.010.01 0.01

addtl-br] 0.17 2.55(3.44 10.98]12.38(13.91| 1.39 | 6.71 | 7.54

addtl-fn] 0.28 3.94 | 4.85 20.52|17.61{19.79] 1.78 | 6.49 | 6.97

addtl-st | 0.45 5.278.87 22.44(25.97|43.28| 2.79 (22.87|21.72

total-br | 0.01 0.05 | 0.05 0.2410.24]0.710.12 [0.48 | 0.69

total-fn] 0.01 0.02]0.03 0.0710.09 0.03 {0.00 | 0.03]0.03

total-st | 0.02 0.14[0.18 0.43/0.59]|2.44|0.31|1.88|1.84

ART-br-

maxmin 0.08

0.4810.47 240(2.83(1.15]0.12]0.61 | 0.89

ART-br-
maxavg

2.68(3.10|1.50]0.15(0.77 | 1.11

ART-br-

maxmax 0.60

2.32(2.7211.15]0.12 [0.59 | 0.88

ART-fn-

h 0.27
maxmin

0.65]0.75|1.07 {0.48|0.01]0.12 [0.21

ART-fn-

maxavg 0.33

0.69 (0.83|1.14]0.49]0.01|0.13 (0.22

ART-fn-

maxmax 0.69

0.83(1.08]0.48|0.01 0.13]0.21

ART-st-

- 1.25
maxmin

2.614.26 (5.77|2.780.31 | 1.88 | 2.02

ART-st-

maxavg 133

1.35(2.944.32(7.30|3.94|0.36 |2.46|2.61

ART-gt-

maxmin 0.11

1.23 1.2412.59|3.86 [5.44|2.84|0.31 | 1.86 |2.04

0.10|1.40|1.04|1.48|2.92)|4.815.46|594]0.49 |2.943.06

Mean

One may further observer from Figure 5 and Figure 6
that ART-br-maxmin does not seem to perform as good as

the additional techniques on both Siemens and UNIX pro-
grams. We argue that it is an illusion. When we use hypothe-
sis testing to compare the means of ART-br-maxmin and the
additional techniques, we can see the mean value of ART-br-
maxmin has no significant difference from that of any
additional technique, as shown in Figure 8 and Figure 9.

A detailed analysis of the results of multiple comparisons
on each subject program also shows consistent findings:
ART-br-maxmin is comparable to the best coverage-based
prioritization technique in terms of APFD results.

5) Time-cost analysis. In this section, we further
analyze the time cost of ART prioritization techniques and
compare them with coverage-based techniques to help guide
practical use. Table V presents the time cost (in seconds) for
different prioritization techniques on different subject pro-
grams. We calculate the mean prioritization time across all
techniques for every subject program and show each of them
in the last row of the table. We observe that the additional
techniques incur much more time cost than the mean prioriti-
zation time. The statement-level ART prioritization tech-
niques have a time cost comparable with the mean. The
branch- and function-level ART techniques, total techniques,
and random ordering always use much less time than the
mean.

6) Conclusion: Based on the above discussions, we find
that our family of techniques can be as effective and
efficient as the coverage-based techniques. In particular,
ART-br-maxmin can be comparable to the best coverage-
based techniques (namely, the additional techniques) in
terms of APFD results, and is much more efficient.
Compared to the total technique, on average, ART-br-
maxmin is more effective but slightly less efficient.

G. Threatsto Validity

In this study, we use the Siemens suite and several UNIX
utility programs as subject programs. All of them are either
small or medium-sized programs. Further experiments on
large programs may further strengthen the external validity
of our findings. We choose only C programs owing to the
limitation of our platform. Further investigations of other
subject programs in different languages may help generalize
our findings. For the Siemens suite, we use the branch-
coverage-based test suites provided by SIR [9] to conduct
our empirical study, but they may not represent all kinds of
test cases in real-life practice.

Another threat to validity is the correctness of our tools.
We use C++ to implement our tools for instrumentation, test
suite prioritization, and results calculation. To minimize
errors, we have carefully tested our tools to assure correct-
ness.

Finally, we only explore white-box ART prioritization
techniques in our controlled experimental study. A more
complete study should further explore black-box ART test
case prioritization techniques, that is, ART techniques
anchored only in input information. Based on different defi-
nitions of input distances, we may come with another family
of black-box ART test case prioritization techniques. We
will leave the investigation of black-box test case prioritiza-
tion techniques as future work.

V. RELATED WORK

In previous work, researchers have proposed many test
case prioritization techniques. Do et al. [10] further investi-
gate the impact of test suite granularity on the cost-benefits
of various regression testing technologies. Wong et al. [28]
proposed an approach for combining test suite minimization
and prioritization to select cases based on the cost per addi-
tional coverage. Srivastava et al. [26] propose a binary
matching system to compute the modified program in basic
block level and prioritize test cases to maximally cover the
amended program. Walcott et al. [27] propose a time-aware
prioritization technique based on a genetic algorithm to re-
order test cases under given time constraints. Li et al. [17]
propose various search algorithms for test case prioritization.
Their results show that genetic algorithms perform well, but
greedy algorithms are surprisingly effective in increasing the
code coverage rate. Both genetic algorithms and our ART
techniques are effective in avoiding local maximums com-
monly faced by greedy algorithms. Since their goal for test
case prioritization is to increase the code coverage rate while
we aim at increasing the fault detection rate, our results are
not directly comparable. We will perform further compari-
sons of ART and genetic techniques based on the same
prioritization goals in future work.

Concolic testing [25] combines concrete and symbolic
executions with a view to generate inputs to cover all feasi-
ble paths of a program effectively and efficiently. In concolic
testing, random ordering only serves to generate initial
inputs. Final useful test inputs are derived from the solutions
of path constraints. In our ART techniques, however,
prioritized test cases are selected from randomly generated
candidate test sets. Hence, randomness takes a more active
role in the ART techniques.

Researchers also study the problem of regression testing
of service-oriented applications. Mei et al. [19] proposed a
hierarchical of prioritization techniques for the regression
testing of service-oriented business applications by modeling
business process, XPath, and WSDL information. In [18],
they also studied the problem of black-box test case prioriti-
zation of service-oriented applications based on the coverage
information of WSDL tags.

Jiang et al. [16] study the problem of how well existing
prioritization techniques support fault localization. They find
random prioritization to be as effective as distribution-based
prioritization techniques in supporting fault localization and
can be a cost-effective option for practical use. In future
work, we may explore whether adaptive random test case
prioritization techniques can better support fault localization.

Adaptive random testing [2][3] improves the perfor-
mance of random testing by adding guidelines to the test case
generation process. Chen et al. [4] also propose the use of
quasi-random sequences for testing, as they spread more
evenly in a high dimensional space than random sequences.
In restricted random testing [1], test cases are only allowed
to be generated outside the exclusion zone so that they can
be more evenly spread. Ciupa et al. investigated how to
define the distance among objects for ART [6][7]. Their
experimental results show that ART based on object distance

can significantly increase the fault detection rate for object-
oriented programs.

VL

Test case prioritization is a means to achieve target
objectives in software testing by reordering the execution
sequences of test suites. Many existing test case prioritiza-
tion techniques use random selection to resolve tie cases.
Paradoxically, the random approach for test case prioritiza-
tion has a long tradition to be deemed as ineffective. Adap-
tive random testing (ART), which aims to spread test cases
as evenly and early as possible over the input domain, has
been proposed for test case generation. Empirical results
have shown that ART can be 40 to 50% more effective than
random testing in revealing the first failure of a program,
which is close to the theoretical limit. In regression testing,
however, further refinements of ART may be feasible in the
presence of coverage information.

This paper proposes the first family of adaptive random
test case prioritization techniques, and conducts an experi-
ment to evaluate its performance. It explores the ART priori-
tization techniques with different test set distance definitions
at different code coverage levels rather than spreading test
cases as evenly and early as possible over the input domain.
The empirical results show that our techniques are signifi-
cantly more effective than random ordering. Moreover, the
ART-br-maxmin prioritization technique is a good candidate
for practical use because it can be as efficient and statisti-
cally as effective as traditional coverage-based prioritization
techniques in revealing failures.

In the future, we will investigate other test case measures
and study beyond code coverage. Furthermore, we also want
to extend our ART prioritization techniques to testing con-
current programs. Finally, as stated in the introduction, the
use of random ordering to resolve tie-cases with existing
greedy algorithms is deemed as ineffective. We would like to
apply ART to resolve tie-cases in order to combine the
merits of our techniques with other approaches.

CONCLUSION AND FUTURE WORK

REFERENCES

K. P. Chan, T. Y. Chen, and D. P. Towey. Restricted random
testing. In Proceedings of the 7th European Conference on
Software Quality (ECSQ 2002), volume 2349 of Lecture
Notes in Computer Science, pages 321-330. Springer, Berlin,
Germany, 2002.

T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse. Adap-
tive random testing: the ART of test case diversity. Journal
of Systems and Software, 2009. doi:10.1016/j.jss.2009.02.
022.

T. Y. Chen, H. Leung, and 1. K. Mak. Adaptive random
testing. In Advances in Computer Science: Proceedings of the
9th Asian Computing Science Conference (ASAN 2004),
volume 3321 of M. J. Maher (ed.), Lecture Notes in Com-
puter Science, pages 320-329. Springer, Berlin, Germany,
2004.

T. Y. Chen and R. G. Merkel. Quasi-random testing. |EEE
Transactions on Reliability, 56 (3): 562568, 2007.

T. Y. Chen and R. G. Merkel. An upper bound on software
testing effectiveness. ACM Transactions on Software Engin-

(1]

[10]

[11]

[16]

eering and Methodology, 17 (3): Article No. 16, 2008.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Object distance
and its application to adaptive random testing of object-
oriented programs. In Proceedings of the 1st International
Workshop on Random Testing), pages 55-63. ACM Press,
New York, NY, 2006.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. Experimental
assessment of random testing for object-oriented software. In
Proceedings of the 2007 ACM S GSOFT International Sym-
posium on Software Testing and Analysis (ISSTA 2007),
pages 84-94. ACM Press, New York, NY, 2007.

I. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOO: adap-
tive random testing for object-oriented software. In Proceed-
ings of the 30th International Conference on Software
Engineering (ICSE 2008), pages 71-80. ACM Press, New
York, NY, 2008.

H. Do, S. G. Elbaum, and G. Rothermel. Supporting con-
trolled experimentation with testing techniques: an infra-
structure and its potential impact. Empirical Software Engin-
eering, 10 (4): 405-435, 2005.

H. Do, G. Rothermel, and A. Kinneer. Prioritizing JUnit test
cases: an empirical assessment and cost-benefits analysis.
Empirical Software Engineering, 11: 33-70, 2006.

S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Priori-
tizing test cases for regression testing. In Proceedings of the
2000 ACM S GSOFT International Symposium on Software
Testing and Analysis (ISSTA 2000), ACM SIGSOFT Software
Engineering Notes, 25 (5): 102-112, 2000.

S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Test
case prioritization: a family of empirical studies. |EEE Trans-
actions on Software Engineering, 28 (2): 159-182, 2002.

S. G. Elbaum, G. Rothermel, S. Kanduri, and A. G. Mali-
shevsky. Selecting a cost-effective test case prioritization
technique. Software Quality Control, 12 (3): 185-210, 2004.

M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for
controlling the size of a test suite. ACM Transactions on Soft-
ware Engineering and Methodology, 2 (3): 270-285, 1993.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experi-
ments on the effectiveness of dataflow- and controlflow-
based test adequacy criteria. In Proceedings of the 16th
International Conference on Software Engineering (ICSE
1994), pages 191-200. IEEE Computer Society Press, Los
Alamitos, CA, 1994.

B. Jiang, Z. Zhang, T. H. Tse, and T. Y. Chen. How well do
test case prioritization techniques support statistical fault
localization. In Proceedings of the 33rd Annual International
Computer Software and Applications Conference (COMP-
SAC 2009), volume 1, pages 99-106. IEEE Computer
Society Press, Los Alamitos, CA, 2009.

Z. Li, M. Harman, and R. M. Hierons. Search algorithms for
regression test case prioritization. |IEEE Transactions on Soft-
ware Engineering, 33 (4): 225-237, 2007.

L. Mei, W. K. Chan, T. H. Tse, and R. G. Merkel. Tag-based
techniques for black-box test case prioritization for service
testing. In Proceedings of the 9th International Conference
on Quality Software (QSIC 2009). IEEE Computer Society
Press, Los Alamitos, CA, 2009.

L. Mei, Z. Zhang, W. K. Chan, and T. H. Tse. Test case
prioritization for regression testing of service-oriented busi-

(23]

(24]

ness applications. In Proceedings of the 18th International
Conference on World Wide Web (WMWW 2009), pages 901—
910. ACM Press, New York, NY, 2009.

A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment. Communica-
tions of the ACM, 41 (5): 81-86, 1998.

M. K. Ramanathan, M. Koyuturk, A. Grama, and S. Jaganna-
than. PHALANX: a graph-theoretic framework for test case
prioritization. In Proceedings of the 2008 ACM Symposium
on Applied Computing (SAC 2005), pages 667-673. ACM
Press, New York, NY, 2008.

G. Rothermel, S. G. Elbaum, A. G. Malishevsky, P.
Kallakuri, and X. Qiu. On test suite composition and cost-
effective regression testing. ACM Transactions on Software
Engineering and Methodology, 13 (3): 277-331, 2004.

G. Rothermel and M. J. Harrold. A safe, efficient regression
test selection technique. ACM Transactions on Software
Engineering and Methodology, 6 (2): 173-210, 1997.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. |EEE Transac-
tions on Software Engineering, 27 (10): 929-948, 2001.

[25]

[26]

K. Sen. Concolic testing. In Proceedings of the 22nd |EEE/
ACM International Conference on Automated Software
Engineering (ASE 2007), pages 571-572. ACM Press, New
York, NY, 2007.

A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In Proceedings of the 2002
ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA 2002), ACM SIGSOFT Software
Engineering Notes, 27 (4): 97-106, 2002.

K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S.
Roos. TimeAware test suite prioritization. In Proceedings of
the 2006 ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA 2006), pages 1-12. ACM
Press, New York, NY, 2006.

W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In Proceed-
ings of the 8th International Symposium on Software
Reliability Engineering (ISSRE 1997), pages 264-274. IEEE
Computer Society Press, Los Alamitos, CA, 1997.

