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Abstract
In the next few decades we may develop AI that can automate ~all cognitive tasks and
dramatically accelerate economic growth. By contrast, today the capabilities and impact of AI
are much more limited. Once we have AI that could readily automate 20% of cognitive tasks
(weighted by 2020 economic value), how much longer until it can automate 100%? This is what
I refer to as the question of AI takeoff speeds; this report develops a compute-centric framework
for answering it. First, estimate how much more “effective compute” – a measure that combines
compute with the quality of AI training algorithms – is needed to train AI that could readily
perform 100% of tasks compared to AI that could just perform 20% of tasks; my best-guess is 4
orders of magnitude more (i.e. 10,000X as much). Then, using a computational
semi-endogenous growth model, simulate how long it will take for the effective compute used in
the largest training run to increase by this amount: the model’s median prediction is 3 years. The
simulation models the effect of both rising human investments and increasing AI automation on
AI R&D progress. It predicts that the transition from full automation of AI R&D to
superintelligence will happen in 1 - 12 months.

How to read this report
Read the short summary. Then play around with the Full Takeoff Model here.

Then, if you have a background in growth economics, or are particularly mathsy, read this
concise mathematical description of the Full Takeoff Model.

Then read the long summary. At the end, I list some particular sections of the full report that I
think would be most useful to read next.

In general, I do not recommend reading the full report top to bottom. Instead I’d treat its sections
as providing longer discussions of the values of important modelling assumptions and
parameter values.

Or, instead of any of the above, you could read this high level informal discussion of the main
qualitative arguments and evidence contained in the report. This is less technical but touches
upon the important points. I’d recommend this first for most readers.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.e67d5t5g3z3e
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.b7u38ytodi7i
https://drive.google.com/drive/folders/1qVPd8M7Iy2jK1jmXNOKVhG4dGRtkWbL2?usp=sharing
https://www.cold-takes.com/where-ai-forecasting-stands-today/
https://takeoffspeeds.com/playground.html
https://takeoffspeeds.com/description.html
https://takeoffspeeds.com/description.html
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.2bj94cljkwsh
https://www.lesswrong.com/posts/Gc9FGtdXhK9sCSEYu/what-a-compute-centric-framework-says-about-ai-takeoff
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0. Short summary (~5 pages)
In the next few decades we may develop AGI that could readily1 perform ~all cognitive tasks as
well as a human professional. If we can run enough AGIs, they could ~fully automate cognitive
labour and dramatically transform the world.

By contrast, today the capabilities and impact of AI are much more limited. How sudden might
this transformation be? More precisely: once AI is capable enough, and we can run enough
copies, that AI can readily automate 20% of cognitive tasks (weighted by 2020 economic value),
how much longer until AI can readily automate 100%?2 This is what I refer to as the question of
AI takeoff speeds.3

AI timelines vs takeoff speeds in the Monte Carlo analysis.
X-axis: first year that AI could readily automate 100% of cognitive tasks in the global economy.

Y-axis: how many years previously could AI readily automate only 20% of these tasks?

3 By contrast, in Superintelligence takeoff speed is defined as the time from human-level AI to
superintelligence. I discuss this, but it is not my focus because I think the bigger crux in takeoff speeds
relates to the time from sub-human but hugely impactful AI to human-level AI (more).

2 Milestones of the form “AI could readily automate x% of tasks” require both that AI is capable enough to
perform the tasks and that we can run enough copies for AI to replace every human doing those tasks. By
contrast, the definition of AGI as “AI that could readily perform 100% of tasks” only requires that we could
run one copy.

1 The phrase “readily” here indicates that i) it would be profitable for organisations to do the engineering
and workflow adjustments necessary for AI to perform the task in practice, and ii) they could make these
adjustments within 1 year if they made this one of their priorities.

https://www.cold-takes.com/where-ai-forecasting-stands-today/
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.h71wxrpfdnwi
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This report develops a framework to estimate takeoff speeds, extending the biological anchors
framework (Bio Anchors) for predicting when we’ll develop AGI (AI that could readily perform
~100% of cognitive tasks).4 It also has implications for AGI timelines.

I use a compute-centric framework in which:
● Some amount of compute would have been sufficient to train AGI using ideas and

algorithms from 2020.5 The exact amount is highly uncertain and very large compared to
today’s biggest training runs.

● Software progress, by which I mean improvements in ideas and algorithms for training AI
systems, merely decreases the compute required to train AGI. Or, equivalently, software
progress increases the amount of “effective compute” we have to train AGI.

○ Effective compute = software * physical compute.
○ So one FLOP training AIs with 2025 software may be worth ten FLOP with 2020

software.
○ All forms of algorithmic progress are represented as increasing the quantity of

effective compute per unit of physical compute.
In this framework, AGI is developed by improving and scaling up approaches within the current
ML paradigm, not by discovering new algorithmic paradigms.

Within this compute-centric framework, I first estimate the ‘capabilities distance’ we need to
traverse during takeoff. Second, I calculate the  ‘speed’ at which we will acquire those
capabilities by simulating a macroeconomic model of software R&D, hardware R&D, and
increasing spending on AI training runs. Then takeoff time ~= distance / average speed.6

More precisely, by ‘distance’ I mean: How much more effective compute do you need to train AI
that can readily perform ~all cognitive tasks (AGI) compared to weaker AI that can only readily
perform 20%7 of these tasks (weighted by 2020 economic value)? I call this the effective FLOP
gap you need to cross during AI takeoff. Its size is very uncertain, but we can make guesses
weakly informed by evidence from ML and biology. My best guess is that the effective FLOP
gap is ~4 orders of magnitude (OOMs): we’ll need 104 times as much effective compute to
train AGI as to train AI that can readily perform 20% of cognitive tasks. But anything from ~1
OOM to ~8 OOMs seems plausible.

7 Why 20%? The choice of startpoint is fairly arbitrary. 5% would be too low, as it could be driven by a few
one-off wins for AI like “automating driving”; 50% would be too high as by then AI may already be having
~transformative impact.

6 This is a slight oversimplification. Takeoff time as defined here is time from AI that could readily perform
20% of tasks to AI that could perform 100%. Whereas the metric I ultimately report is AI could readily
automate 20% to 100%. The latter accounts for whether we have enough compute to run enough copies
to automate those tasks in practice, given the size of the human population. In practice though, this
mostly makes very little difference to the results (<1 year) because runtime compute is rarely a bottleneck.

5 More precisely, if experts in 2020 were given ~2-5 years to experiment with the new quantity of compute
and design a training run, they could train AGI (more).

4 The explicit forecasting target of Bio Anchors is “transformative AI”, but the framework can be used to
forecast AGI.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/FLOPS
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.ptghocis3bc6
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By our ‘speed’ crossing the effective FLOP gap I mean: how quickly will we increase the
effective compute used in the largest training run?

We can cross the gap by increasing three quantities:
1. The quality of AI software, i.e. algorithms for training AI. If the level of software doubles,

we get twice as much effective compute for each FLOP.
2. The quality of AI hardware, measured as FLOP/$. Improved hardware allows us to buy

more FLOP with a fixed budget.
3. $ spend on FLOP in the largest training runs.

These three quantities multiply together to give the effective compute in the largest training run:
Effective compute in the largest training run = software * FLOP/$ * $ on FLOP.

This implies we can calculate our speed crossing the effective FLOP gap as:
g(effective compute in the largest training run) = g(software) + g(FLOP/$) + g($ on FLOP).

8

First estimate the size of the effective FLOP gap; then calculate how quickly we’ll cross it by simulating
the trajectories of {$ on FLOP in the largest training run}, FLOP/$ and software.

As we cross the effective FLOP gap, AI automates more tasks and so AI R&D progress accelerates.

I use a computational model, the Full Takeoff Model, to calculate the evolution of software,
FLOP/$ and {$ on FLOP in the largest training run}. The Full Takeoff Model is designed to
capture the most important effects from:

I. Rising human investments in software R&D, hardware R&D and AI training runs.
○ I use semi-endogenous growth models to predict how R&D spending will

translate into software and hardware progress.
II. Increasing AI automation of software R&D, hardware R&D, and the broader economy.

○ I use CES task-based models to predict how AI automation affects software R&D
progress, hardware R&D progress, and GDP.

8 Link to diagram.

https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
https://docs.google.com/presentation/d/1nefLcXMoDqlvKF14cqdLXxy6qy5tX84-fRwCQuy03dA/edit#slide=id.g13e0be465cb_0_24
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○ The model implies that software, hardware and GDP grow increasingly quickly as
we cross the effective FLOP gap and AI automates more tasks.

○ I assume it is somewhat easier for AI to automate cognitive tasks in {software
and hardware R&D} than in the broader economy. This makes takeoff faster.

9

The key dynamics represented in the Full Takeoff Model

The Full Takeoff Model makes assumptions about the compute needed to train AGI using 2020
algorithms, the size of the effective FLOP gap, the pace at which human investments rise, the
diminishing returns to hardware and software R&D, bottlenecks from tasks that AI cannot
perform, and more. It calculates trajectories for software, hardware, $ on training, effective
compute in the largest training run, and GDP.

9 Link to chart.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=cZMw3ql2YDqa#
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Simulation of Full Takeoff Model with my best-guess values for each parameter.
In the playground you can enter your preferred parameter values and study the results.

($ on FLOP in largest training run ~= $ on FLOP globally * fraction of global FLOP on training)

Monte Carlo analysis
We perform a Monte Carlo analysis to get a distribution over takeoff speed given our uncertainty
about these parameters:

MC results

Percentile

Takeoff speed10

Years from “AI could readily automate 20% of cognitive tasks” to “AI could readily
automate 100% of cognitive tasks”.11

Tasks in the general economy. Tasks in software and hardware R&D.12

1% 0.3 0.9

10% 0.8 1.6

20% 1.2 2.2

12 Why is takeoff slower for AI R&D tasks? The Monte Carlo puts weight on AI R&D being significantly
easier to automate than the general economy. If so then, by the time AI can readily automate 20% of
tasks in the general economy, it will have already automated most tasks in AI R&D and significantly
accelerated AI progress. This factor speeds up takeoff for tasks in the general economy but not for tasks
in R&D.

11 Reminder: milestones of the form “AI could readily automate x% of tasks” require both that AI is capable
enough to perform the tasks and that we can run enough copies for AI to replace every human doing
those tasks. By contrast, the definition of AGI as “AI that could readily perform 100% of tasks” only
requires that we could run one copy.

10 Conditional on 100% automation before 2100.

https://takeoffspeeds.com/playground.html
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50% 2.9 4.3

80% 7.6 9.6

90% 12.5 14.6

99% 28 30.7

There is a strong relationship between the difficulty of developing AGI and takeoff speed. If AGI
is easier to develop then (in expectation):

1. The effective FLOP gap is smaller, because it is bounded from above by AGI training
requirements.13

2. Our average speed crossing it is higher:
a. One way to quickly cross the effective FLOP gap is to quickly increase the

fraction of the world’s computer chips used on the largest training run.
b. If AI is easy to develop, this fraction will still be small when we start crossing the

effective FLOP gap. So there’s more room to grow the fraction as we cross the
gap.

c. If in addition the effective FLOP gap is small (point 1), we could cross most of the
gap merely by increasing the fraction. I.e. we could cross the gap very quickly.

Difficulty of developing AGI (x-axis) against takeoff speed (y-axis)

13 If AGI could be trained with X OOMs more effective compute than today’s largest training run, the
effective FLOP gap must be <X OOMs.
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To get to my personal all-things-considered bottom line, I eye-ball adjusted the Monte Carlo
results for incorporate limitations of the model, especially i) ignoring types of discontinous
progress around AGI that can’t be represented by a narrow effective FLOP gap and ii) not
modelling various lags to training and deploying advanced AI.

My personal probabilities are still massively in flux, but my current best guesses are:

Beliefs of
the author

Percentile

Takeoff speed
Years from “AI could readily automate 20% of cognitive tasks” to “AI could readily
automate 100% of cognitive tasks”.14

Tasks in the general economy. Tasks in software and hardware R&D.

3% 0.1 0.3

10% 0.3 1

20% 0.8 2

50% 3 5

80% 10 12

90% 20 25

How much time from AGI to superintelligence?
This has not been my main focus, but the framework has implications for this question. My best
guess is that we go from AGI (AI that can perform ~100% of cognitive tasks as well as a human
professional) to superintelligence (AI that very significantly surpasses humans at ~100% of
cognitive tasks) in 1 - 12 months. The main reason is that AGI will allow us to >10X our software
R&D efforts, and software (in the “algorithmic efficiency” sense defined above: effective FLOP
per actual FLOP) is already doubling roughly once per year.

Implications for AI timelines
Compared to Bio Anchors, this framework predicts larger maximum $ spend on the largest
training for AGI, includes additional speed-ups from AI automation, and models the possibility
we could leverage enormous amounts of runtime compute to get full automation sooner. As a
result, its median predicted AGI year is 10 years earlier than Bio Anchors (2043 vs 2053),
despite using the same distribution over AGI training requirements.

14 Reminder: milestones of the form “AI could readily automate x% of tasks” require both that AI is
capable enough to perform the tasks and that we can run enough copies for AI to replace every human
doing those tasks. By contrast, the definition of AGI as “AI that could readily perform 100% of tasks” only
requires that we could run one copy.
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Notable assumptions and limitations of the framework
● Compute-centric framework that assumes that some amount of compute would be

sufficient to train AGI in 2020, and that algorithmic progress merely reduces that amount.
● Models software and compute as inputs to AI development, but not data/environments.
● Assumes that AI capabilities improve continuously with software research effort

(research into AI algorithms). More.
● Ignores lags between developing and deploying AIs, and ignores other delays. More.
● I mostly focus on the transition to AGI rather than the aftermath of AGI, as this is where I

think the origin of fast takeoff is most likely to be. More.
● Cannot directly make predictions about many strategically-important AI milestones.

○ It can predict “AI can readily add  $10tr/year to GDP”,  “AI can readily automate
30% of R&D”, “GDP is growing at 30%/year”, or “AI cognitive output exceeds that
of 10 billion humans”.

○ It cannot predict “AI has situational awareness”, “AI is super-human at
persuasion/deception”, or “AI kills us all if it’s not aligned”. Though these are
plausibly correlated with things the framework can predict.

I recommend playing around with the FTM before reading the summary.

I recommend that readers familiar with economic growth theory now read a concise
mathematical description of the full economic model.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.5ckfv45698rr
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.jtn146g63zpb
https://takeoffspeeds.com/playground.html
https://takeoffspeeds.com/description.html
https://takeoffspeeds.com/description.html
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1. Long summary (~25 pages)

What is takeoff speed?
Roughly speaking, I focus on the amount of calendar time between “AI is capable enough to
have massive economic impact” and “AI is that is completely transformative”.

I’m not aware of a very principled way to specify the startpoint and endpoint here.

One option is economic growth rates, e.g. years from GDP growing at 5%/year to 30%/year.
This is easily measurable, but has the downside that AI capabilities might grow explosively but
have little, or very delayed, impact on GDP due to various bottlenecks.

AGI can be defined as AI that can perform ~100% of cognitive tasks as well as a human
professional,15 and a second option to extend that definition to less capable AI. In particular,
quantify AI capabilities via the % of cognitive16 tasks AI can readily perform, where each task
is weighted by its economic value in 2020. (The phrase “readily” here indicates that i) it would
be profitable for organisations to do the engineering and workflow adjustments necessary for AI
to perform the task in practice and ii) they could make these adjustments within 1 year if they
made it one of their priorities.) This second option also dovetails nicely with economic models of
automation, but it has a few weaknesses.17

A third option is the % of cognitive tasks AI can readily automate. This is like the second
option but comes with the additional requirement that we can run enough copies of the AI(s) to
actually replace the humans currently performing the tasks. This is more relevant to the
collective cognitive capacity of AI systems. Today, valuations of AI market size are $10-100b,18

suggesting that AI can readily automate <1% of cognitive tasks.19

19 AI’s impact on GDP may be greater than its market size, but it would have to have to be adding
~$0.5tr/year to GDP to have automated 1% of cognitive tasks.

18 E.g. here, here, here, here. I don’t know how reliable these estimates are, or even their methodologies.

17 First, it will be hard to measure in practice what % of cognitive tasks AI can perform (more). Second,
there are not literally a fixed set of tasks in the economy; new tasks are introduced over time and AI will
contribute to this (more, more). Thirdly, at what cost can AI perform these tasks? The model implies it will
be able to perform them very cheaply, more cheaply than humans (more). Fourth, whether AI can perform
a task may depend on whether ‘nearby’ tasks have already been automated, but I don’t model this
(more).

16 By “cognitive task” I mean “any part of the workflow that could in principle be done remotely or is done
by the human brain”. So it includes ~all knowledge work but also many parts of jobs where you have to be
physically present. E.g. for a plumber it would include “processing the visual and audio inputs relating to
the problem, choosing a plan to solve it, and deciding what specific actions to take second by second”.
But it doesn’t include the “pure physical labour” parts of plumbing that require a physical body.

15 This could be one generally capable AI, or many narrow AIs working together. I think the takeoff model I
ultimately use sits better with the latter interpretation.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.mjc08cokwy57
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.mjc08cokwy57
https://medium.com/dataseries/artificial-intelligence-market-size-a99e194c184a
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.globenewswire.com/news-release/2022/04/19/2424179/0/en/Artificial-Intelligence-Market-Size-to-Surpass-Around-US-1-597-1-Bn-By-2030.html
https://www.statista.com/statistics/941835/artificial-intelligence-market-size-revenue-comparisons/
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.r867m16ctxjb
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.q68c4jwtdpr
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.q68c4jwtdpr
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.359kstfhqzdc
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.km1oni8liijr
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.87x6hlleb42h
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.87x6hlleb42h
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The full sensitivity analysis includes a variety of ways of quantifying takeoff speed, but I currently
focus on years from “AI could readily automate 20%20 of cognitive tasks” to “AI that could
readily automate 100% of cognitive tasks”.

● The startpoint corresponds to AI that could readily increase world GDP by ~$10tr/year,21

assuming AI was deployed wherever it was profitable.22

○ Standard Baumol effects will diminish the fraction of GDP paid to the automated
tasks after they are automated, but this is still the effect on total GDP.

● The endpoint corresponds to AI that could collectively replace all human cognitive
output. I believe that by this point we very likely have AI that could permanently
disempower all of humanity if it wanted to.

Calculating takeoff speed

What’s driving the results on a high level?
My process for estimating takeoff speed is as follows:

● First estimate the effective FLOP gap.
○ Roughly speaking, this is the “difficulty gap” from AI that can readily perform 20%

of cognitive tasks to AGI. How much harder is the latter to develop than the
former?

○ Within our compute-centric framework, we translate “How much harder?” to “How
much more effective compute is required during training?”.

○ More precisely, the effective FLOP gap means: How much more effective
compute do you need to train AGI compared to AI that can only readily perform
~20% of cognitive tasks (weighted by 2020 economic value)?

○ Result: the effective FLOP gap is ~1 - 8 OOMs, best guess ~4 OOMs.
● Use a toy model to estimate how quickly we’d cross the effective FLOP gap from human

investments alone, ignoring the effects of AI automation.
○ This can be roughly interpreted as “How fast would takeoff be if no one ever

actually deployed the AIs in the real world, and just used them for demos?”
○ Result: we initially increase the effective compute in the largest training run by

~0.7 OOMs/year, then this falls to ~0.4 OOMs/year as we can no longer increase
the fraction of the world’s AI chips on the largest training run. In my best-guess

22 More precisely, deployed anywhere where i) it would be profitable for organisations to do the
engineering and workflow adjustments necessary for AI to perform the task in practice and ii) they could
make these adjustments within 1 year if they made this one of their priorities.

21 World GDP is ~$100tr, about half of which is paid to human labour. If AI automates 20% of that work,
that’s worth ~$10tr/year.
[This is a bit high, as many tasks have a component of physical labour (though all have some cognitive
component). On the other hand, AI will probably produce more output at those tasks than the humans
they replace (as they’re cheaper to run), increasing their value-add; and AI will additionally increase the
rates of capital accumulation and of tech progress.]

20 Why 20%? The choice of startpoint is fairly arbitrary. 5% would be too low, as it could be driven by a
few one-off wins for AI like “automating driving”; 50% would be too high as by then AI is already having
~transformative impacts.

https://takeoff-speeds-dev.firebaseapp.com/reports.html#mc_analysis
https://en.wikipedia.org/wiki/Baumol%27s_cost_disease#:~:text=Baumol's%20cost%20disease%2C%20also%20known,have%20experienced%20higher%20productivity%20growth.
https://docs.google.com/spreadsheets/d/1bWqaGGti-ILpDA7G0I9kNjBmHVrkfqgS9TkHanOFYxU/edit#gid=0
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://ourworldindata.org/grapher/labor-share-of-gdp?tab=chart&country=NGA~NPL~HRV~OWID_WRL
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scenario, with a gap of 4 OOMs, I get an average speed of ~0.5 OOMs/year and
so takeoff takes ~8 years.

○ At this point we’re assuming that soon after we get AI that can readily perform x%
of tasks, we can run enough copies that AI could readily automate x% of tasks.
This turns out to be an OK simplification.

● Simulate the Full Takeoff Model (FTM) to calculate how quickly we will cross the effective
FLOP gap in the best-guess scenario. The FTM:

○ Models the effects of human investment more carefully, including some additional
bottlenecks and complications that the toy model ignored.

■ Result: this slows takeoff in the best-guess scenario to ~12 years.
○ Uses a standard model of automation from growth economics to predict the effect

of partial AI automation on software progress, hardware progress, and GDP (and
thus $ spend on training runs).

■ As the effective compute used in the largest training run increases, AI
automates more and more tasks.

■ Result: this speeds up takeoff in the best guess scenario to ~5 years.
○ The FTM keeps track of how many compute we have for running AIs, so it can

calculate the desired “AI could readily automate x% of tasks” metric.
● Run a Monte Carlo simulation to get a probability distribution over takeoff speed.

○ The incompatibility between low AGI training requirements and large FLOP gaps
lowers the median sampled effective FLOP gap to ~3.3 OOMs. This speeds up
median takeoff to ~4 years.

○ The possibility that it’s easier for AI to automate {hardware and software R&D}
than the general economy reduces the median takeoff to ~3 years.

○ Takeoff speed in the [10th, 50th, 90th] percentiles of the Monte Carlo are ~[0.8, 3,
11] years.

■ The <1 year takeoff is mostly driven by:
● Small effective FLOP gap + large scope for increasing the fraction

of chips used for the largest training run → you can quickly cross
the gap by increasing spending on the largest training run.

● The possibility of significant AI R&D automation by the time we
start crossing the gap.

To summarize:

Estimate Takeoff speed

Toy model without AI automation 8 years = 4 OOMs / 0.5 OOMs per year

Full Takeoff Model with best-guess inputs 5 years

Median result from the Monte Carlo 3 years

The next three sections discuss the size of the effective FLOP gap, the toy model that excludes
AI automation, and the Full Takeoff Model’s treatment of AI automation.

https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
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The effective FLOP gap is ~1 - 8 OOMs, best guess ~4 OOMs
How much more effective compute do you need to train AGI than to train AI that can readily
perform ~20% of cognitive tasks (weighted by 2020 economic value)?

Hans Moravec's "rising tide of AI capacity" can illuminate the meaning of the effective FLOP gap.
Currently AI can only readily perform a small fraction of cognitive tasks – the areas of the map that are

underwater. Over time the AI capabilities improve and the tide rises. Eventually, AI can readily perform all
cognitive tasks: we’ve crossed the effective FLOP gap and everything is under water.

The size of the effective FLOP gap is very uncertain, but evidence from biology and ML can
weakly inform the choice. Here’s a brief summary of some key pieces of evidence.

● AGI training requirements place an upper bound on the effective FLOP gap.
○ E.g. if AGI can be trained with 1e36 FLOP with 2020 algorithms (my median) and

we’ve already done a 3e24 FLOP training run, the gap must be <7.5 OOMs.
● Limitations of SOTA AI tighten this bound.

○ I think a 300X scale-up of today’s SOTA AI (1e27 effective FLOP) wouldn’t be
sufficient to readily perform 20% of cognitive tasks, in which case the effective
FLOP gap must be <9 OOMs.

● How AI capabilities vary with training FLOP: suggests ~5 OOMs
○ GPT-3 had a ~300X bigger training run than GPT-2; you can play around with

both to get a feel for their capabilities. I guess you might need two equally big
improvements to cross the effective FLOP gap, which implies it’s ~5 OOMs.

○ GPT-N looks like it will solve some LM benchmarks ~4 OOMs earlier than others
(see diagrams in link); I’d guess the effective FLOP gap will be bigger than this
as economic tasks are much more varied along many dimensions.

https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance#Comparisons_and_limits
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● How human + animal capabilities vary with brain size: suggests ~2 OOMs
○ Data suggest a 10% bigger brain (in terms of FLOP/s) grants ~5 extra IQ points.

Extrapolating heroically, a 10X bigger brain grants ~120 IQ points, which seems
sufficient to cross the effective FLOP gap.

■ Anchoring to model size, a 10X bigger model might require 100X more
training FLOP, suggesting a gap of ~2 OOM.

■ Anchoring to lifetime learning compute, a 10X bigger brain requires 10X
more lifetime learning FLOP. So you might see the same improvement in
ML by increasing training FLOP by 10X → gap of ~1 OOM.

■ You could get smaller gaps by using smaller IQ point gaps.
○ You can make similar arguments via chimp/human comparisons.
○ Importantly, this approach ignores the fact AI may have strong comparative

advantages over humans on some tasks but not others, allowing very “limited”
AIs to automate many tasks.

● Practical difficulties with partially automating jobs: suggests a smaller effective
FLOP gap.

○ For AI to be able to readily perform 20% of cognitive tasks, it must be able to do
so without too much additional engineering work or rearranging of workflows.23

○ If there are significant practical difficulties in partially automating jobs,24 then the
capabilities for non-trivial partial automation may only be a little lower than those
for full automation.

○ We can incorporate this by using a smaller effective FLOP gap than we otherwise
would have.

● Horizon length.
○ If “short horizon”25 training can perform 20% of cognitive tasks but performing all

cognitive tasks requires “long horizon” training, the effective FLOP gap will be >5
OOMs.26

Evidence Effective FLOP gap estimate

AGI training requirements + Limitations on SOTA AI <~9 OOMs

How AI capabilities vary with training FLOP ~5 OOMs

How human + animal capabilities vary with brain size ~2 OOMs

26 There are ~5 OOMs between a “10 second” horizon length and a “1 month” horizon length.

25 This concept is from Bio Anchors. Short horizons means that the model only needs to “think” for a few
seconds for each data point; long horizons means the model needs to “think” for months for each data
point and so training requires much more compute.

24 E.g. Brynjolfsson (2018) finds that “most occupations include at least some [automatable by machine
learning] tasks; (iii) few occupations are fully automatable using ML; and (iv) realizing the potential of ML
usually requires redesign of job task content.

23 Reminder: if AI can “readily” perform a task then i) it would be profitable for organisations to do the
engineering and workflow adjustments necessary for AI to perform the task in practice, and ii) they could
make these adjustments within 1 year if they made this one of their priorities.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.t4q0c4vqd2mn
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
https://www.aeaweb.org/articles?id=10.1257/pandp.20181019
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Practical difficulties with partially automating jobs Shorter gap

Horizon length >5 OOMs

Overall ~4 OOMs (~1 to 8 OOMs)

All in all, my best-guess is that the effective FLOP gap is ~4 OOMs, with values from ~1 to ~8
OOMs possible. Lower than ~2 OOMs feels out-of-whack with how SOTA AI abilities scale with
training FLOP and with the plausibility of AI having strong comparative advantages on certain
tasks; much higher than ~5 OOMs feels in tension with how IQ scales with brain size in humans
and chimps.

More on evidence about the size of the FLOP gap.

Speed crossing the effective FLOP gap from human investment, ignoring AI
automation
Recall, we cross the effective FLOP gap by increasing the effective compute used in the
largest training run, which can be calculated as

Effective compute in the largest training run = software * FLOP/$ * $ on FLOP.

This implies we can calculate our speed crossing the effective FLOP gap as:
g(effective compute in the largest training run) = g(software) + g(FLOP/$) + g($ on FLOP).

This section estimates how quickly each of these three components will grow due to rising
human investments as we approach AGI.

Background - “waking up” to advanced AI’s economic potential

I believe pre-AGI systems have the potential to increase world GDP by $10s of trillions per year.
By contrast, AI software and hardware investments are currently in the $10s billions. So I expect

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.7fvn5owzoada
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investments in AI to grow more rapidly once relevant actors “wake up” to the economic and
strategic potential of AI.27

Let’s look at the effect of human investment on each component in turn.

More $ spent on FLOP for the largest training run

I split this into two sub-components:

$ on FLOP for the largest training run = $ on FLOP globally * fraction of global FLOP on the
largest training run

I guess that $ on FLOP globally will double every ~3 years, based on evidence about recent
semiconductor revenue growth, the time to build a fab, and the expansion of munitions
production at wartime.28 More.

I estimate that there’s currently room to increase the fraction of global FLOP on the largest
training run by ~3 - 4 OOMs, but that this will decrease to ~1 - 2 OOMs by 2030. After “wake
up”, I guess the fraction will increase by ~3X per year (growth rate of 72%) until it hits a cap.
This quickly moves us through part of the effective FLOP gap, and then stops having an effect.
More.

I forecast faster growth here than Bio Anchors, shortening timelines. Bio Anchors forecasts $ on
FLOP for the largest training run to only grow at 3% after reaching ~$200b, whereas I expect
it to continue to double every ~3 years (growth rate of ~22%) after “wake up” until it caps out at
~1% of world GDP (though in simulation, we typically get AGI before training runs are this big).

More FLOP/$ from better quality hardware

Bio Anchors directly extrapolates past trends in FLOP/$, predicting a 2.5 year doubling time. By
contrast, I fit a semi endogenous growth model to historical data about how hardware R&D
spending translates into more FLOP/$, predict future R&D spending, and then calculate future
FLOP/$.

The fitted model suggests that each doubling of cumulative hardware R&D spending drives
~5 doublings of FLOP/$. So if cumulative spending grows at x%, FLOP/$ is predicted to grow
at 5x%.29

29 This assumes the growth rates are instantaneous growth rates, defined as e^gt. All the growth rates I
report are instantaneous.

28 This, like FLOP production as we approach AGI, is an example of “growth of a specific industry’s output
when there is suddenly very large demand”.

27 This could be either AI organisations reinvesting revenues from AI products, or impressive demos
attracting external investment. I don’t model either in detail and instead just try to ballpark the overall rate
of investment growth.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.18uhy85mjtax
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.a4x4hg3upow6
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.9us1ymg9hau0
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Recently the growth rate of cumulative spending has only been ~5%, and annual hardware R&D
spending is <$100b. This suggests there’s plenty of room for spending to grow after “wake up”.

I guess that annual R&D spending will grow at ~17% (~4 year doubling) after “wake up”. This is
based on eye-balling historical growth of hardware R&D, growth of R&D in other areas, and
growth in US defense and space R&D after WW2.30

If cumulative R&D spending were growing at 17%, I’d predict that FLOP/$ would grow 17*5=
85% (~0.8 year doubling). But it turns out that if annual spending suddenly switches from 5% to
17% growth, then growth of cumulative spending rises gradually from 5% to 17%, only
exceeding 10% after ~8 years.31 So my current forecast is that, after “wake up”, FLOP/$
initially doubles every ~3 years but grows increasingly quickly over time.32

This forecast feels a little slow. It’s plausible that annual R&D spending has a quick one-off
increase of >2X before growing more slowly, and this would imply faster growth of FLOP/$ with
less delay. On the other hand, I’m not sure the R&D sector could productively absorb that much
money, and I’m forecasting the growth of quality adjusted R&D inputs.

More on the effects of human investment on FLOP/$.

Better software

My process for software is the same as for hardware: I fit a semi endogenous growth model to
historical data about how software R&D spending translates into better software, predict future
software R&D spending, and then calculate future software.

There’s massive uncertainty in the historical data about the rate of software improvement. Most
measurements of software progress in specific domains suggest the quality of algorithms
doubles33 every ~1-2 years; I follow Bio Anchors’ in making the conservative assumption that
progress for AGI training algorithms is slower, with a doubling time of only 2.5 years. A more
aggressive assumption here would reduce AGI timelines by 2-5 years and speed up takeoff.

Combined with a shaky estimate of the growth of software R&D spending, the fitted model
implies that each doubling of cumulative software R&D spending drives ~1.25 doublings
of software.

I forecast that cumulative spending will grow at ~25% after “wake up”, implying that software will
grow at 25*1.25 = 31%, a ~2.2 year software doubling time.

33 The report operationalises “a doubling of software” to mean: your algorithms now use physical FLOP
twice as efficiently. So doubling software has exactly the same effect as doubling your quantity of physical
FLOP.

32 The Full Takeoff Model caps total hardware R&D spending at 1% of global GDP.
31 This sheet illustrates the dynamic.

30 This, like hardware R&D as we approach AGI, is an example of “growth of a specific industry’s R&D
when there is suddenly very large demand”.

https://www.onlinecomponents.com/en/blogpost/2021-semiconductor-rd-spend-to-rise-4-357/
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.9vgai87ecxln
https://docs.google.com/spreadsheets/d/14ecoaQKdvWAWeClRF6NLW9pr_y6vgd1nnrDQdvPXkoM/edit#gid=0
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More on the effects of human investment on software.

Total time to cross the effective FLOP gap from human investment

So, combining the above, I calculate the growth of the the largest training run after “wake up” as
follows:

34

What might this imply about takeoff speed? If there’s a 4 OOM effective FLOP gap, and you can
cross 1 OOM by increasing "the fraction" (of global FLOP used on the largest training run), then
it will take you ~8 years to cross overall.35

Note, if the effective FLOP gap was only 2 OOMs, you could cross it in just 2-3 years.36 So
increasing “the fraction” allows you to cross short FLOP gaps especially quickly.

If you’re confused about how the different quantities discussed here combine together to give an
estimate of takeoff speeds, I recommend looking at this toy model.

The parameters discussed in this section (the growth rates of human investment and the returns
to hardware and software R&D) play important roles in the Full Takeoff Model.

36 1 OOM to cross with the fraction * 3 years per OOM = 3 years.
35 Time = distance / speed = 3 OOMs to cross without the fraction / [~0.4 OOMs/year] = ~8 years.
34 Link to image.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.hyxtfr70xh92
https://docs.google.com/spreadsheets/d/1bWqaGGti-ILpDA7G0I9kNjBmHVrkfqgS9TkHanOFYxU/edit#gid=0
https://docs.google.com/presentation/d/1nefLcXMoDqlvKF14cqdLXxy6qy5tX84-fRwCQuy03dA/edit#slide=id.g13e0be465cb_0_24


20

Speed crossing the effective FLOP gap, including effects from AI
automation
The results of this section ultimately come from simulating the Full Takeoff Model, a economic
growth model that combines the effect of human investment and AI automation to estimate how
the effective FLOP on the largest training run changes over time.

The main thing the FTM adds to the analysis above is modelling AI automation of software
R&D, hardware R&D, and GDP. So let’s start by examining that part of the FTM.

AI automation increases our average speed crossing the effective FLOP gap by ~2.5X
AI automation increases GDP and the amount of hardware and software R&D progress made
each year. This causes the effective compute on the largest training run to grow increasingly
quickly as we cross the effective FLOP gap.

37

To estimate the effect of continuously increasing AI automation I adapt a task-based CES model
from the economic automation literature. Here’s a very simplified toy version of what my
model says about how AI automation affects GDP. (Later I’ll introduce various complications.)

● At first, AIs perform <1% of economic tasks, reflecting current annual AI revenues being
<1% of global GDP. The other tasks are performed by humans, so GDP is ~proportional
to the number of humans. (There’s no capital in this toy example; it is in the FTM and I
discuss it below.)

37 Link to diagram.

https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=Ir3AZvj~NlvG#
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● Over time, the effective compute in the largest training run increases. As a result, AIs
automate an increasing fraction of economic tasks.38

○ This increases GDP.
○ How much by?

■ Let’s say AIs automate 50% of tasks. This boosts GDP in two ways.
■ Firstly, humans can focus on the remaining 50% of tasks, and AIs can

match the per-task output of humans, increasing the output per task by
2X. This boosts GDP by 2X.39 40

■ Secondly, AIs soon have more output-per-task than humans, because
there are many more AIs than humans. This increases GDP even further.

● How much further depends on the extent to which GDP is
bottlenecked by the unautomated human tasks.41

● I consider some weakly-relevant empirical evidence about the
strength of these bottlenecks.

● My best-guess for the bottleneck implies that GDP could rise a
further 4X in this example, if you had unlimited AIs performing
their 50% of tasks.

● Exactly what the boost is depends on how many AIs you run to do
the automated tasks. After “wake up”, I think actors will be willing
to spend a lot of $ running AIs that can accelerate hardware and
software progress, so I expect this number to be large.42

■ So AI automating 50% of tasks increases GDP by ~2X - 8X.
● By analogous logic, automating 20% of tasks boosts GDP by

~1.2X - 2X; automating 75% of tasks boosts GDP by ~4X - 60X.43

○ How do we decide how much automation has happened? The FTM has a
mapping from {effective compute in the largest training run} to {% of cognitive
tasks that AI can perform}.

■ In the best-guess scenario the mapping is such that:
● 1e36 effective FLOP44 → AI can perform 100% of cognitive tasks
● 1e32 effective FLOP → AI can perform 20% of cognitive tasks
● This matches the best-guess effective FLOP gap of 4 OOMs.

44 I.e. an amount of effective compute equivalent to using 1e36 FLOP with 2020 algorithms.

43 Here’s the formula. If AI automates x% of tasks, the minimum effect is 1/(1-x%); the maximum effect is
1/(1-x%)^(1 + 1/-rho), where rho controls the strength of the bottleneck. My best guess is rho=-0.5, so the
maximum effect is 1/(1-x%)^3. 1/(1-0.2) = 1.25, 1.25^3=1.95; 1/(1-0.75) = 4, 4^3=64.

42 The Full Takeoff Model assumes that the percentage of global compute used to run AIs doing software
rises quickly to a cap of ~20% after “wake up”.

41 In the growth model, the strength of this bottleneck depends on the substitutability between different
tasks: how much can more AI labour on task 1 make up for limited human labour on task 2?

40 If AI had automated x% of tasks, the boost here would equal 1/(1-x%).

39 Here I’m assuming that AI output-per-task at least keeps up with human output per task. I can assume
this because it’s a condition for AI automating the tasks in the first place.

38Automating a task requires both that AI can perform it and that there’s enough runtime compute to
automate the task in practice (i.e. enough compute to cheaply replace the humans currently doing the
task). It turns out that runtime compute is rarely a bottleneck to automation.

https://docs.google.com/spreadsheets/d/1r-WxW4JeNoi_gCMc5y2iTlJQnan_LLCF5s_V4ZDDMkI/edit#gid=0
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● Eventually, AI performs 100% of tasks (i.e. we train AGI) and GDP is proportional to the
number of AIs we can run (which is proportional to $ on FLOP running AIs * FLOP/$ *
software).

The logic described here for AI automation’s effect on GDP is the same as for its effect
on R&D input. Simply replace “GDP” with “R&D work done per year” - after all GDP is simply
the value of goods and services produced per year. So AI automating 50% of R&D tasks would
boost annual R&D progress by >2X. (Caveat in fn.45)

The Full Takeoff Model (FTM) complicates the above simple model by assuming that a fixed
fraction of tasks are performed by capital: machines and equipment. Neither AIs nor humans
can perform these tasks. This means that GDP (/R&D work done per year) is never proportional
to the number of AIs. In fact, even with unlimited AGIs, GDP (/R&D work done per year) cannot
exceed a certain limit due to being “bottlenecked” by the amount of capital we have. I consider a
few weakly-relevant sources of evidence about the strength of this bottleneck. My wild guess for
these bottlenecks is that, if AI automated all cognitive tasks and we had unlimited AGIs but no
additional capital, then GDP would increase by ~6X while hardware R&D progress would
increase by ~100X.

For software R&D, the FTM assumes that the role of capital is instead played by physical
compute for doing computational experiments. A limited amount of physical compute has the
potential to bottleneck software progress. More.

The FTM has slightly lower training requirements for automating software and hardware R&D,
compared with the general economy. This speeds up takeoff somewhat, because by the time AI
can readily automate 20% of economic tasks it may have already automated (e.g.) 40% of R&D
tasks, significantly speeding up AI progress.

What’s the overall effect of AI automation on the speed crossing the effective FLOP gap? This is
hard to reason about analytically, but our simulations suggest AI automation reduces the time
from “AI that can readily automate 20% of tasks” to “AI that can readily automate 100% of
tasks” by ~2.5X.46

46 These results are strikingly similar to those of a simple toy model. In the toy model, crossing the
effective FLOP gap corresponds to travelling along the x-axis from 1 to 0. Without AI automation your
speed equals 1 unit/second throughout; you cross the entire effective FLOP gap in one second and the
final fraction f of the gap in f seconds. With AI automation, your speed equals 1/x throughout, increasing
over time; it turns out that you cross the entire effective FLOP gap in 0.5 seconds and the final fraction f of
the gap in (f^2)/2 seconds. Time to cross final fraction f of the gap without automation / time to cross final
fraction f of the gap with automation = f / [(f^2)/2] = 2/f. In our case, f = 0.8 and so the ratio is 2.5X, as
found in simulation.

45 This is the short term boost to annual R&D progress you’d get if you instantaneously automated 50% of
R&D tasks. Longer term, your faster R&D progress would increase diminishing returns and so your rate of
annual progress would slow over time. The short term boost calculation is roughly accurate if the effective
FLOP gap is very narrow; if it’s wide then the calculation will overestimate the rate of R&D progress,
perhaps significantly. This is accounted for in the FTM.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.h5y78bnuknqk
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If you’re confused about how AI automation affects our previous calculation of takeoff speeds, I
recommend looking at the version of the toy model that incorporates AI automation.

How the FTM works
The Full Takeoff Model (FTM) combines the key dynamics discussed above:

● Each timestep it calculates the effective compute in the largest training run (= software *
FLOP/$ * $ on FLOP in the largest training run), then uses this to determine how many
tasks AI can automate. Then it calculates how software, FLOP/$, and $ on FLOP in the
largest training run increase during that timestep.

● Software and FLOP/$:
○ These increase due to software R&D and hardware R&D.
○ For the tasks not yet performed by AI, inputs of labour and capital grow as

discussed in the section ignoring AI automation:
■ The human labour and physical capital invested in hardware R&D grows

at ~17% after “wake up”,47 and at their current rate (~4%) before.
■ The human labour invested in software R&D grows at 25% after “wake

up”, and at their current rate (~20%) before.
■ “Wake up” is assumed to happen when AI can readily automate

sufficiently many tasks; my current best-guess value is 6% of tasks
(weighted by 2020 economic value).

○ AIs perform an increasing fraction of tasks in software and hardware R&D.
■ The effects of AI automation on R&D interact multiplicatively with those

from rising human investment. For example, if rising human investment
doubles inputs to hardware R&D, and AI automation increases effective
R&D inputs by 2X, then total hardware R&D inputs rise by 4X.

■ After “wake up” the fraction of effective compute used for software and
hardware R&D grows rapidly.

● $ on FLOP in the largest training runs.
○ This increases due to a larger fraction of GDP spent on FLOP in the largest

training run, and due to GDP growth.
○ The fraction of global GDP spent on FLOP in the largest training run grows as

discussed in the section that ignored AI automation: initially increasing ~3X per
year while we increase the fraction of chips used for training, later doubling every
~3 years.

○ AI automation increases GDP growth,48 which in turn increases g($ spend on
FLOP in the largest training runs). For example if GDP growth increases from 3%
to 7%, then g($ spend on the largest training run) increases by 4%.

48 Ignoring AI automation, GDP grows at ~3%/year due to exogenously growing labour and TFP. AI
automation of goods and services increases GDP growth. I don’t model AI automation of generic R&D.

47 One caveat here: once GDP starts growing more quickly, physical capital starts growing more quickly
too. This causes capital inputs to hardware R&D grow somewhat more quickly than 17%.

https://docs.google.com/spreadsheets/d/1bWqaGGti-ILpDA7G0I9kNjBmHVrkfqgS9TkHanOFYxU/edit#gid=0
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Summary of core dynamics in the FTM.
A growing fraction of the world’s effective compute is used in the largest training run → AI can automate
certain tasks for GDP and R&D → the world allocates growing fractions of capital, labour and effective

compute to hardware R&D and software R&D tasks (the remainder is allocated to GDP) → GDP grows,
hardware improves, software improves → we recalculate the stocks of capital, labour and (especially)

effective compute.

In addition to this, the FTM models a number of other plausibly-important details.49

This playground lets you see trajectories of key quantities, enter your own inputs, and see the
justifications for my preferred inputs - I recommend you give it a try! Those who want a deeper
understanding of how the model works should read this mathematical description of the FTM
(h/t Epoch for this).

Many thanks to Epoch for coding up and running the FTM.

With my best-guess parameters, takeoff lasts ~5 years
I used my best-guess values for all parameters (discussed above and listed here): takeoff lasts
~5 years. The following graph show how the components of the largest training run evolve over
time.

49 A delay from hardware R&D to producing SOTA chips (sometimes you need to upgrade fabs or
construct new ones); a distinction between the cumulative stock of AI chips and the annual production
(I’ve talked about the latter); a “stepping on toes” parameter (so that 10 researchers make more progress
in 10 years than 100 researchers make in 1 year); assumptions about training and runtime requirements
for AI that can perform x% of cognitive tasks, for all x; AIs are heavily concentrated on doing AI R&D after
“wake up”; AI advantages at R&D due to e.g. faster thinking speed; ceilings on FLOP/$ and software;
returns to hardware and software R&D become worse as we approach their ceilings; ceilings on the
fraction of world GDP spent on hardware R&D, on software R&D and on buying FLOP; and the
assumption that “wake up” happens when AI has automated 3% of cognitive tasks (weighted by their
economic value in 2020).

https://takeoffspeeds.com/playground.html
https://takeoffspeeds.com/description.html
https://epochai.org/
https://takeoffspeeds.com/playground.html
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.epvo05wz8jt1
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.wi3vto6myw5
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Components of the effective compute on the largest training run over time with my best-guess
parameters.

The report walks through the dynamics of this scenario and discusses other scenarios, where
the parameters take conservative (slower takeoff) and aggressive (faster takeoff) values.50

50 “Aggressive” parameter values sometimes shorten takeoff but lead to longer AI timelines. E.g. a small
effective FLOP gap has this effect (see explanation below).

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.24485bp85hdx
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.w93f9oz4dz91
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This model shortens AGI timelines, compared to Bio Anchors
The Full Takeoff Model (FTM) implies shorter AGI timelines than Bio Anchors. The most
important reasons are:

● Speed-up from pre-AGI systems. Pre-AGI systems accelerate software and hardware
progress; they also increase GDP and so increase the $ spent on FLOP globally.51

○ Effect size ~6 years
● Faster growth of % world GDP spent on a training run. Even ignoring AI automation,

the FTM predicts that, a few years after “wake up”, we’ll use ~10% of global FLOP on
the largest training run, with $ on FLOP globally continuing to double every ~3 years.

○ Effect size ~2 years

The FTM also models factors that make timelines longer than Bio Anchors.

The following table compares the best-guess timelines implications of FTM with those of Bio
Anchors.52

FLOP to train
AGI using 2020
algorithms

Effective
FLOP gap

Bio-anchors
timelines
Year of TAI

FTM timelines
Year AI could readily
automate ~all cognitive labour

Timelines
shift

~1e33 3 2043 2038 5

~1e36 4 2050 2044 6

~1e39 6 2062 2050 8

These timelines shifts are very sensitive to the size of the effective FLOP gap. Holding AGI
training requirements fixed, a larger effective FLOP gap makes AGI sooner by lowering the
training requirements for AI that significantly accelerates AI progress. More on this comparison.

52 The table compares the Bio Anchors forecast for “transformative AI” with the FTM’s forecast for “AI that
could readily automate 100% of cognitive tasks”. The latter is a higher bar, so the shift in timelines is
bigger than what the table suggests. The comparison assumes AGI (AI that could readily perform 100%
of cognitive tasks) requires 1 OOM more effective compute to train than transformative AI.

51 Even if you don’t expect pre-AGI systems to significantly affect some sectors of GDP, it’s plausible that
they significantly boost the number of AI chips produced and so of $ spent on FLOP globally.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.jtopg4x29fut
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53

Holding AGI training requirements fixed, a bigger effective FLOP gap → we develop AGI sooner.

More qualitatively, this research has increased my probability that we’ll develop AGI by
2060. Even if the training requirements for AGI are really high, the requirements for “AI that
adds $trillions to GDP” or “AI that notably accelerates hardware or software progress” might be
significantly lower. Hitting either of these lower bars could spur further progress that soon gets
us all the way to AGI. In the language of this report, I think that avoiding AGI by 2060 probably
requires both large AGI training requirements and a narrow effective FLOP gap.54

54 This is a bit oversimplified. Poor returns to hardware and software R&D could prevent us from hitting
the lower thresholds in time, and hardware/software R&D progress will slow when the fraction of GDP
spent on these areas stops increasing as it must do eventually. Another possibility is that AI has big
economic impacts but isn’t useful for AI R&D.

53 Link to diagram

https://docs.google.com/presentation/d/1IA-6Gx6Ktc8AzM-474TXofPSYw8tPN_WBN5DaxoShsk/edit#slide=id.g1bdad8e73f5_0_0


28

Trading off training FLOP for runtime FLOP can shortens timelines
It is often possible to improve AI performance by allowing a model to “think” for longer (e.g.
generating many answers, evaluating them, submitting the best); this often has the same effect
as increasing training size by several OOMs.55

For example OpenAI found that {generating 100 solutions and then evaluating which is best}
improved performance at solving math problems as much as increasing model size by 30X.

This suggests we could achieve the same performance as an AGI by doing a smaller training
run but allowing the AI to think for longer. E.g. perhaps our training run is 10X smaller than is
required for AGI, but we make up for this by giving the trained model 100X the thinking time.

Indeed, my best-guess AGI training requirements (1e36 FLOP with 2020 algorithms) and
runtime requirements (1e16 FLOP/s with 2020 algorithms), with some other assumptions, imply
that we will be able to run ~10 trillion AGIs by the time we train AGI. In other words, there will
be an abundance of runtime compute, especially relative to the 10,000s of people working on
software R&D for SOTA AI. If we can leverage this abundance we might achieve the output of,
say, 1 billion AGIs long before doing a 1e36 training run.56 I think this could reduce the training
run size needed for full automation by 1-3 OOMs, possibly more.

When this dynamic is included in the FTM, best guess timelines shorten by ~5 years.

More on this tradeoff.

Monte Carlo
We ran 10,000 simulations, each time randomly sampling each parameter between its
“conservative” (slower takeoff) and “aggressive” (faster takeoff57) values (listed here).58

We encoded correlations between the parameters. The most important correlations are:59

59 These high-level correlations, and others, are recorded here; the full matrix of correlation is here. I think
I’ve overestimated the correlations between these inputs, extremizing the tail outcomes. On the other
hand, my sampling procedure means the parameter values never fall outside the “conservative” to
“aggressive” range, which pushes in the opposite direction.

58 The sampling distribution is a mixture of two distributions. It places 50% weight on a log-uniform
distribution between the parameter’s “conservative” and “best-guess” value, and 50% weight on a
log-uniform distribution between its “best-guess” and “aggressive” values. The only exception is AGI
training requirements, which are sampled from the Bio Anchors distribution.

57 Note, parameters that are “aggressive” for takeoff speed are sometimes “conservative” for AI timelines.
In particular a narrow effective FLOP gap (holding AGI training requirements fixed) makes takeoff faster
but delays AGI.

56 For example, suppose we do a 1e34 training run and then run the resultant 1e34-AI using enough
compute to run 100 billion 1e36-AIs. Perhaps, because our training run is 100X below the AGI training
requirement, we get the same output as if we’d run 1 billion 1e36-AIs. We’d be trading off 2 OOMs of
runtime compute for 2 OOMs of training compute.

55 See Jones (2021), AlphaCode, Codex, WebGPT. More.

https://arxiv.org/pdf/2110.14168.pdf
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.1z2zr4za6v9n
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.72sdbiqaf89s
https://takeoffspeeds.com/megareport.html#mc_analysis-inputs
https://docs.google.com/spreadsheets/d/1Cn6GTfVfC2VrO1ayeqDHyBy5vr5Ef-OuEtT9wrlO5Qs/edit#gid=684255754
https://takeoffspeeds.com/reports.html#mc_analysis-inputs
https://arxiv.org/pdf/2104.03113.pdf#page=5
https://arxiv.org/pdf/2203.07814.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://cdn.openai.com/WebGPT.pdf
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.jjsb5oxoswxz
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● Strong correlation between growth of AI investments across areas. If spending in
one area of AI (e.g. software R&D) grows quickly, I also expect spending to grow quickly
in other areas (e.g. hardware R&D).

● Medium correlation between AGI training requirements and the effective FLOP
gap. If AGI requires “long horizon” training, or some other high-cost approach to training,
that increases my probability that 20% of tasks will be automated with much less
effective training compute than AGI.

● Medium correlation between AGI training requirements and growth of AI
investments. If AGI training requirements are lower, it should be easier to grow AI
investments quickly as they’re starting from a lower base.

We resample the parameters, except AGI training requirements,60 until we avoid the implication
that AI can already readily automate >1% of the economy or >5% of R&D. This reduces the
median sampled effective FLOP gap from 4 OOMs to 3.3 OOMs.

Here are the results, sampling AGI training requirements from the Bio Anchors best-guess
distribution.61

61 We assume AGI training requirements are 1 OOM higher than TAI training requirements, and reduce
the probability of “you need more compute than evolution” from 10% to 4%.

60 Bio Anchors already adjusted its training requirements distribution to account for the fact that we’re
seemingly not close to training TAI today; resampling training requirements here would double-count this
update.

https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495


30

Percentile

AI timelines
First year when AI can readily automate 100% of

cognitive tasks in the general economy.

1% 2025.7

10% 2029.6

20% 2032.7

50% 2043.3

80% 2070.3

90% ≥ 2100

99% ≥ 2100

Percentile62

Takeoff speed
Years from “AI can readily automate 20% of cognitive tasks” to “AI can readily
automate 100% of cognitive tasks”.

Tasks in the general economy. Tasks in software and hardware R&D.

1% 0.3 0.9

10% 0.8 1.6

20% 1.2 2.2

50% 2.9 4.3

80% 7.6 9.6

90% 12.5 14.6

99% 28 30.7

Compared to my previous best-guess scenario where AGI training requirements are 1e36, the
Monte Carlo’s median takeoff speed is faster (3 years vs 5 years). This is because:

● The median effective FLOP gap in the Monte Carlo is shorter than the best-guess (3.3 vs
4 OOMs)

● The Monte Carlo allows for the possibility that it’s easier for AI to automate cognitive
tasks in {software and hardware R&D} than in the general economy, which speeds up
takeoff in expectation.

62 This is all conditional on AGI before 2100.



31

Monte Carlo with aggressive training requirements
My median AGI training requirements (~1e36 FLOP using 2020 algorithms) are high compared
to some. I reran the Monte Carlo on an alternative distribution with a more aggressive
distribution that has a median of ~1e31.

Percentile

AI timelines
First year when AI can readily automate 100% of

cognitive tasks in the general economy.

1% 2024.8

10% 2027

20% 2028.6

50% 2033.7

80% 2044.1

90% 2054.9

99% ≥ 2100

Percentile63

Takeoff speed
Years from “AI can readily automate 20% of cognitive tasks” to “AI can readily
automate 100% of cognitive tasks”.

Tasks in the general economy. Tasks in software and hardware R&D.

1% 0.2 1.1

10% 0.5 1.7

20% 0.7 2.2

50% 1.7 3.7

80% 3.9 6.4

90% 6.1 9.1

99% 20 24.2

63 This is all conditional on AGI before 2100.

https://docs.google.com/spreadsheets/d/15o3oOFLqjenZdFGfmx7jOHgBjOWv01minIx6BM0WpOU/edit#gid=383813695
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Unsurprisingly, lowering median training requirements by 5 OOMs makes timelines significantly
shorter and takeoff significantly faster.

Alternative ways to think about takeoff speeds
Reporting the time between two somewhat-arbitrary AI capability levels gives a limited view into
the dynamics of takeoff. Another approach is to ask “What does the world look like Y years
before AI can readily automate all cognitive tasks?”. Here’s one example ( more):

Doubling times (median64)
X years before AI can readily automate 100% of tasks

Quantity 1 year 2 years 5 years 10 years

FLOP/$ 0.3 1.2 2.7 3.1

Software 0.2 1.2 2.4 2.9

GWP65 0.7 2.4 8.4 21.1

More about the Monte Carlo set-up; see full results.

Parameter-importance analysis
We analysed how much varying each parameter from its “conservative” to its “aggressive” value
(listed here) affected the results, holding other parameters fixed. My conclusion is that the most
important parameters for takeoff speed, in order, are:

1. AGI training requirements.
2. Effective FLOP gap.
3. R&D parallelisation penalty (“If I double research efforts, how much faster is R&D

progress?”)
4. Software returns.
5. How much easier is it for AI to automate the cognitive tasks in {software and hardware

R&D} vs the general economy?
6. A parameter describing how much unautomated cognitive tasks bottleneck R&D

progress. It influences how much AI accelerates R&D progress when it’s automated
some but not all cognitive tasks.

7. How much can you reduce the training requirements for full automation by allowing AIs
to think for longer? (I.e. the cap on the tradeoff between training and runtime compute.)

More on which parameters are important, and why.

65 The model doesn’t include lags to deploying AI, strongly suggesting that these GWP growth rates are
too high.

64 The median percentile for hardware will in general not be the same simulation run as the median
percentile for software. And similarly for GWP and for other percentiles. The percentiles are calculated for
each quantity separately.

https://takeoffspeeds.com/reports.html#mc_analysis-%22years%20before%20agi%22%20tables
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.grqzdszb6roa
https://takeoffspeeds.com/reports.html#mc_analysis
https://docs.google.com/spreadsheets/d/1r-WxW4JeNoi_gCMc5y2iTlJQnan_LLCF5s_V4ZDDMkI/edit#gid=0
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6jpzxbifat0k
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The framework has many limitations
Here I briefly summarise key limitations of the framework, and how correcting for them would
change predictions about timelines and takeoff speed.

● Assumes no lag between developing and deploying AI. More.
○ → impacts of pre-AGI systems happen later → AGI happens later so slower

takeoff
■ But I don’t expect large lags for deployment in AI R&D and in chip

production as these aren’t customer facing so face i) fewer regulations
and ii) less back-lash from customers who distrust AI.

○ → bigger lag for weaker AIs than for stronger AIs → faster takeoff
■ I partly account for this by holding the necessary deployment lag fixed in

the definition of the effective FLOP gap,66 which narrows that gap.67

■ But better AI may reduce the actual deployment lag down towards the
necessary deployment lag.

○ How these bullets net out depends on your exact definition of takeoff speed.68

● Assumes AI capabilities improve continuously with additional inputs. More.
○ If progress is in fact jumpy, then there could be a fast takeoff even with a wide

effective FLOP gap.
○ I find specific arguments for discontinuities unconvincing, but do assign it some

probability.69

● Assumes no lag in reallocating human talent when tasks have been automated.
○ → fewer human workers than I assume improving AI → longer timelines

■ This is important if pre-AGI systems fully automate certain jobs, less so if
they partially automate jobs and workers continue to do the other parts.70

● Doesn’t model data/environment inputs to AI development. More.
○ → takeoff could be slower if this input takes a long time to increase, or faster if it

is quick to increase

70 E.g. Brynjolfsson (2018) finds that “most occupations include at least some [automatable by machine
learning] tasks; (iii) few occupations are fully automatable using ML.”

69 I tentatively put ~6% on a substantial discontinuity in AI progress around the human range. (By “
substantial discontinuous jump” I mean “>10 years of progress at previous rates occurred on one
occasion”.) More.

68 So far, I’ve focussed on the time for AI capabilities to go from some startpoint to some endpoint, without
explicit reference to AI’s actual impact on the world. In this case, I expect takeoff to be slower than the
model predictions due to the first sub-bullet. But if both the startpoint and endpoint do refer to actual
impact (e.g. “GDP grows at 5%” to “GDP grows at 20%”) then the second sub-bullet might more-than
makes up for the first. An interesting case is if the startpoint incorporates impact but the endpoint doesn’t
(e.g. “AI adds $10tr/year” to “AI could kill us if it wanted to”). In this case I expect takeoff to be faster due
to deployment lags only applying to the startpoint.

67 In particular, holding the necessary deployment lag fixed strengthens the argument “practical barriers to
partially automating tasks” and so pushes towards a smaller effective FLOP gap.

66 I define startpoint/endpoint of the effective FLOP gap as AI that can readily perform x% of tasks, where
“readily” means that the necessary deployment lag is < 1 year.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.5ckfv45698rr
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.vz3j5wi26xmb
https://www.aeaweb.org/articles?id=10.1257/pandp.20181019
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.37p97cga2xd
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○ A more comprehensive framework might define a FLOP-data gap that can be
crossed with more/better data/environments or with more compute.

○ Some of the important dynamics I’ve analysed for compute (rising investment, AI
automation) would apply to data as well, but others wouldn’t (the amount of high
quality data isn’t already doubling every 1-3 years).

● Doesn’t model actors’ incentives to invest in training runs and AI R&D . Instead the
model makes hacky assumptions about how investments change before and after the
world “wakes up” to AI’s full economic and strategic potential. More.

More on limitations of the framework.

My all-things-considered probabilities
Adjusting for the above limitations, my overall probabilities change from the Monte Carlo as
follows:

● About 10% more probability on <1 year takeoff.
○ Mostly from a discontinuous jump in AI capabilities allowing it to cross even a

large effective FLOP (/“difficulty gap”) very quickly.
● Expect somewhat slower takeoff in general (~30% longer).

○ Lags to deploying AI in AI R&D and reallocating human labour.
○ Unmodelled schlep to developing AIs (e.g. gathering data).

My all things considered views on takeoff speed differ from the Monte Carlo for a few of
reasons, most importantly:

1. Somewhat higher probability on <1 year takeoff, due to a discontinuity in AI progress
causing us to cross a medium-sized gap very quickly.

2. Longer takeoff speeds in general, due to the Full Takeoff Model ignoring various
real-world frictions in developing and deploying AI.

a. I’m not adjusting here for the possibility that we make an unusually large effort to
slow down (e.g. delaying deployment by >6 months) due to caution about
catastrophic risks from advanced AI. I’m just incorporating standard processes of
testing and iterative deployment.

Beliefs of
the author

Percentile

Takeoff speed
Years from “AI could readily automate 20% of cognitive tasks” to “AI could readily
automate 100% of cognitive tasks”.71

Tasks in the general economy. Tasks in software and hardware R&D.

71 Reminder: milestones of the form “AI could readily automate x% of tasks” require both that AI is
capable enough to perform the tasks and that we can run enough copies for AI to replace every human
doing those tasks. By contrast, the definition of AGI as “AI that could readily perform 100% of tasks” only
requires that we could run one copy.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.t6irw8p5l3fo
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.io2mfsn29u71
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3% 0.1 0.3

10% 0.3 1

20% 0.8 2

50% 3 5

80% 10 12

90% 20 25

Capabilities takeoff speed vs impact takeoff speed
Importantly, the above numbers, and my discussion more generally, has focussed on the takeoff
speed of AI capabilities. To achieve the endpoint “AI could readily automate 100% of cognitive
tasks” requires that AI is capable enough, and we have enough runtime compute, that AI could
replace all human cognitive labour. It does not require that AI in fact has this impact.

How will AI’s impact takeoff speed differ from its capabilities takeoff speed? I think that:
● Deployment delays, e.g. due to human caution, will slow down impact takeoff speed. But

competitive dynamics could limit these delays in certain strategically important fields.
● Once AI is significantly above human intelligence, it might remove these deployment

delays, e.g. by disempowering humans or accelerating their deployment processes. This
could mean that impact takeoff speed is faster than capabilities takeoff speed. More.

○ Importantly, I expect the time from “AI actually adds $10tr/year to GDP” to “AI that
could kill us if it wanted to” to be many years smaller than is predicted by the
FTM, and plausibly negative, on account of deployment lags.

So overall I expect impact takeoff speed to be slower than capabilities takeoff, with the important
exception that AI’s impact might mostly happen pretty suddenly after we have superhuman AI.

What about the time from AGI to superintelligence?
So far I’ve mostly focussed on the time from AI readily automating 20% of cognitive tasks to AI
readily automating 100%.

But the time from AGI (AI that can readily perform 100% of tasks, without trading off training
compute and runtime compute) to superintelligent AI is also strategically important. It tells us
how much time we might have to adjust to somewhat superhuman AI before there is massively
superintelligent AI.

The mainline prediction of this framework is that, unless we purposefully slow down, this time
period will be extremely short: probably 1 - 12 months. The reasons are:

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.q5xc156929dn
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● Extremely fast software progress.
○ Software for AI is already doubling roughly every year, from human efforts alone.

By the time we train AGI we’ll be able to run enough AGIs to increase the
cognitive labour used for software R&D by >10X. What’s more, these AGIs will
be super-human in some areas, not require leisure time or sleep, and potentially
think much faster than humans. This suggests the first software doubling after
AGI will take 1 month or less.

○ I argue that it’s more likely than not that there would be a ‘software-only
singularity’ in this scenario, with software progress becoming faster and faster
until total AI cognitive output has increased by several OOMs.

○ You can see this effect in the playground with the green line representing
software progress going “almost vertical” as we approach AGI.

○ This isn’t guaranteed.
■ Software progress may have become much harder by the time we reach

AGI.
■ Progress might become bottlenecked by the need to run expensive

computational experiments, or to rerun multi-month long AI training runs.
■ If AGI training requirements are very low (<1e28 FLOP) we may not be

able to run enough AGIs to significantly accelerate R&D progress.
■ But even with these barriers, I expect we could develop superintelligent AI

within a year.
● Fast growth of physical compute.

○ Years before we have AGI, we’ll have AI that can automate a significant fraction
hardware R&D, speeding up the design of new AI chips. And we’ll have AI that
can increase their throughput of fabs for manufacturing AI chips, or accelerate
the construction of new fabs.

○ This means that the quantity of physical compute in the world may be increasing
very rapidly just as we first develop AGI.

○ You can see this effect in the playground with the yellow line representing
hardware progress “rising more steeply” as we approach AGI.

○ Again, this is not guaranteed.
■ Hardware progress may have become much harder by the time we reach

AGI.
■ Progress might be bottlenecked by the need to do physical experiments.
■ It’s possible that deployment lags will be long enough that we have AGI

before pre-AGI systems have had significant effects on hardware
improvements.

Some high-level frames for thinking about the report’s conclusions
I agree with all of these; I’ve ordered them based on how useful I find them.

https://takeoffspeeds.com/playground.html
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.limc1xpm5tfc
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.limc1xpm5tfc
https://takeoffspeeds.com/playground.html
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● If takeoff is fully continuous, it could be pretty fast. An important potential source of
fast takeoff is that, while AI progress is continuous, the rate of improvement is still steep
enough to drive fast takeoff.72

a. The ‘steep rate of improvement’ is driven by:
i. Not-extremely-high AGI training requirements, implying a large increase

in AI capabilities per OOM of additional training FLOP.
ii. Fast growth in the largest training run, driven by i) the fast growth of

FLOP/$ and software, ii) room to significantly scale up $ spend on the
largest training and incentive to do so, and iii) effects of AI automation.

● No time for very slow takeoff unless AGI is very hard to develop. It’s hard to
maintain the following three things:

a. Pre-AGI systems will have huge impacts, e.g. generating $10s-100s trillions/year.
b. The training requirements for AGI are not extremely large.
c. There will be decades between pre-AGI systems with huge impacts and AGI.

These are hard to maintain because: (a) → very large increases in AI investments +
significant speed-ups from AI automation → rapid increase in the largest training run.
Then (b) + rapid increase in the largest training run → we train AGI within ~10 years →
not-(c).

● IEM but with quantitative predictions. Intelligence Explosion Microeconomics (IEM)
gave arguments for thinking AGI would lead to accelerating growth but didn’t (try to)
ground things empirically or make quantitative predictions. The FTM does this via
assumptions about future AI investments, the returns to hardware + software R&D, and
the size of the effective FLOP gap. More.

● Quantifies the tradeoff between takeoff speed and timelines.
a. Holding AGI training requirements fixed, a slower takeoff means AGI happens

sooner (due to pre-AGI systems helping to develop AGI).
b. The size of the effective FLOP gap controls this tradeoff. A wider gap makes

takeoff slower but means AGI happens sooner.
● Augments growth models to make predictions about takeoff speed. More.

a. Economic growth models have a strong tendency to predict that full automation
of both goods production and R&D will cause large increases in both GDP and
the GDP growth rate.73

b. According to these models, whether there is a “fast takeoff” in GDP depends on:
i. How much time does it take to go from “most tasks can’t be automated” to

“~all tasks can be”?
ii. Once all tasks are automated, how long does it take to amass enough

(computer) capital that per-task output is much higher than it was when
humans were doing the tasks?

c. The FTM answers (i) by assuming that: the number of tasks you can automate is
tied to the largest training run you’ve done; and the threshold for automating ~all

73 See section 8.2.

72 This can be framed as a reply to Paul Christiano’s 2018 writing about takeoff speed: while he’s right that
takeoff is probably continuous, it may yet be very fast. More.

https://intelligence.org/files/IEM.pdf
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.lstzm0ohvw5h
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.89h04ai7mpg3
https://www.openphilanthropy.org/research/could-advanced-ai-drive-explosive-economic-growth/
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.5kvqr0xxy20p
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tasks is based on Bio Anchors; and the threshold for lower levels of automation
also depends on the effective FLOP gap.

d. The FTM answers (ii) by modeling how the amount of compute and software
change over time.

e. Ultimately, the FTM finds it likely that i) we probably automate most cognitive
tasks (weighted by economic importance in 2020) in a 5 year period and ii) very
soon after this is done, total cognitive output from AI far outstrips that from
humans.

Steel man case for fast takeoff
Given all of the above, here’s my strongest case for a fast takeoff:

● Small effective FLOP gap.
○ Brain size – IQ correlations in humans are the only evidence we have of

capability scaling in the human range, it suggests an effective FLOP gap of ~1
OOM.

○ The practical difficulties of partial automation are significant, so significant partial
automation will be possible only a little before full automation.

● Fast investment ramp up.
○ The economic, military and strategic incentives to ramp-up investments in AI as

we’re crossing the effective FLOP gap will be huge; the low current level of AI
investments mean they could rise by 1-2 OOMs very quickly.

● Other important metrics of takeoff speed will be faster than the ones I’m reporting.
○ Time from “AI that could provide clear alignment warning shots” is probably after

“AI that could readily 20% of tasks”, and “AI that could kill us if it’s not aligned” is
probably before “AI that could readily 100% of tasks”.

○ The time when we actually see warning shots will be later than when we have AI
that could provide those warning shots, making the situation even worse.

○ Impact takeoff more generally could be faster than capabilities takeoff if
superhuman AI quickly removes barriers to AI deployment. More.

○ This point is very important.
● Another framework implies takeoff will be much faster.

○ A different one-dimensional model of takeoff implies it will take ~0.5 - 2 years.
○ However, this model ignores the fact that AI will probably surpass humans on

some tasks long before others.
● AI capabilities might not improve smoothly with additional inputs.

○ Discontinuities aren’t that rare; this raises the probability of fast takeoff above the
results of the Monte Carlo.

Steel man case for slow takeoff
Here’s my strongest case for a slow takeoff:

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.l8tft88inpkr
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.5ckfv45698rr
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.dor321f7pjrl
https://aiimpacts.org/discontinuous-progress-investigation/
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● Large effective FLOP gap, high training requirements.
○ “Short horizon” training will generate $trillions but won’t be enough to automate

all cognitive tasks. That will take “long horizon training”, which will take >5 OOMs
more FLOP.

○ When you 300X training run size (as when going from GPT-2 to GPT-3) the
performance increase isn’t that big, so we’ll need many such improvements to
cross the effective FLOP gap.

○ Rather than using training requirements to upper-bound the effective FLOP gap,
we should use the effective FLOP gap to lower-bound training requirements.

● Slow ramp up of human investment in AI.
○ Increasing fab production is really hard as the industry is so complex.
○ It will take years for new talent to add value in software and hardware R&D.
○ Hardware returns are dying out fast and software progress depends on hardware

progress (more, more).
● Unmodelled bottlenecks will push towards slower takeoff.

○ High quality data and environments; need for new algorithmic paradigms.
○ I don’t model delays in deploying AIs and reallocating human workers.

● AI took decades to cross human range in many narrow domains.
○ AI impacts find this in chess, Go, and checkers.
○ So we should be sceptical of any framework predicting we’ll cross the human

range across most economically valuable tasks in <10 years.
○ Some possible resolutions of this tension:

■ The effective FLOP gap is on the high end of my estimates, implying high
AGI training requirements.

■ Progress in those games is slower because “ML progress is faster than
GOFAI progress",74 there was slower investment growth, and there
weren’t speed-ups from AI automation of AI R&D.

■ The range of “humans who get paid to play these games” gets crossed
much more quickly than the full human range that includes amateurs; it’s
the former range we’re interested in from the perspective of this report
(which is about when AI could readily automate various fractions of the
economy).

■ The effective FLOP gap is narrower than in those games, e.g. because
“capabilities scale especially quickly in the human range” or “it’s difficult to
partially automate jobs”.

○ This is a very important topic for further investigation.

Reading recommendations after the long summary
Here are the sections of the full report I think are most worthwhile reading after the long
summary (in order).

74 This is suggested by figure 3 of this paper and by this graph.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.trqjyfdt9n4x
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.limc1xpm5tfc
https://aiimpacts.org/is-the-range-of-human-intelligence-small/#AI_performance_on_human_tasks
https://arxiv.org/pdf/2206.14007.pdf
https://www.reddit.com/r/baduk/comments/6ttyyz/better_graph_of_go_ai_strength_over_time/
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● Evidence about the size of the effective FLOP gap - this is probably the most important
and uncertain parameter for takeoff speed, perhaps after AGI training requirements.

● There’s a ~65% chance of a temporary “software-only singularity”, where AGIs improve
software increasingly quickly while being run on a ~fixed hardware base.

● Takeoff speeds are faster according to a one-dimensional model of takeoff.
● A new version of the chimp-human-transition argument for very fast takeoff.
● Trading off training FLOP for runtime FLOP shortens timelines.
● A list of open questions.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.iaqy7rxuutko
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.dor321f7pjrl
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.apdvo0uwo5qe
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.xrfouzges0mp
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.pqsdnvsiiqwd
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You should read the short and long summaries before reading sections in this document.

2. What is takeoff speed? Why does it matter?
I recommend skipping this section unless you’re interested to hear about ways of
quantifying takeoff speeds that I didn’t end up focusing on.

This section discusses what I mean by AI takeoff speed, why it matters, and how we might
quantify takeoff speed. Ultimately, I think there are multiple reasons to care about takeoff speed
and multiple reasonable ways to quantify it. I introduce some ways of quantifying takeoff speed
that are both decision-relevant and that I can forecast using the framework of this report.
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https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.io2mfsn29u71
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.v34bnv4lz2vq
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Takeoff speed of AI capabilities need not be the same as takeoff
speed of AI impacts
What question is takeoff speeds trying to answer? One vague version of the question is: How
long will it take to go from significantly capable AI to billions of AGIs1?

If it takes a month then takeoff is fast; if it takes 50 years then takeoff is slow. There are many
ways you could define “significantly capable AI”; I’ll discuss some possibilities below.

If we want to avoid reference to the (arbitrary) startpoint and endpoint we can phrase the
question as: How quickly will AI capabilities improve as AI systems collectively approach and
surpass human intelligence?

This refers to AI capabilities directly rather than AI’s effect on the world so I call it “capabilities
takeoff speed”.

Another version of the takeoff speeds question is: How long will it take to go from AI having a
significant impact on the world to AI having a truly transformative impact on the world?

Again, if this happens in a month then takeoff is fast; if it takes many decades then takeoff is
slow.

We could define “significant impact” in different ways depending on whether we’re interested in
economic impact, unemployment, military power, technological progress, or something else.
And takeoff speed will plausibly differ between these different domains based on how much AI’s
effects are bottlenecked by regulations or scarce physical equipment (more). Again, in the case
of economic impact, I’d define “significant” as “adding ~$5trillion/year to global GDP”.

By “transformative impact” I mean causing a transition comparable to (or more significant than)
the agricultural or industrial revolution, e.g. by significantly increasing (~10X) the rate of
economic growth (more).

This definition refers not just to AI capabilities but to its actual impact on the world; let’s call this
impact takeoff speed.

If  capabilities takeoff is fast, then impact takeoff is more likely to be fast. But they can come
apart in either direction.

● Suppose there’s fast capability takeoff, but regulations, safety concerns and other
bottlenecks prevent advanced AI being used in the economy. If these bottlenecks are

1 By AGI I mean an AI system, or a collection of AI systems, that can do virtually all cognitive tasks that a
human can do. By “cognitive task” I mean “any part of the workflow that could in principle be done
remotely or is done by the human brain”. So it includes ~all knowledge work but also many parts of jobs
where you have to be physically present. E.g. for a plumber it would include “processing the visual and
audio inputs relating to the problem, choosing a plan to solve it, and deciding what specific actions to take
second by second”.

https://www.openphilanthropy.org/blog/some-background-our-views-regarding-advanced-artificial-intelligence#Sec1


3

removed or overwhelmed gradually over many decades, you could have a slow impact
takeoff.

● Suppose delays to broad adoption get shorter for more advanced AIs. Then impact
takeoff will be faster than capability takeoff. An extreme case of this is where regulations
stop AI have ~any economic impact until misaligned AGI forcibly and suddenly
disempowers humanity.

I think the question of impact takeoff is probably more important than capabilities takeoff, but
harder to forecast as there are more factors that influence it. The framework here is most
reliable for predicting capabilities takeoff. I will report takeoff metrics that relate to both impact
and capabilities, but the impact metrics don’t account for various possible delays. Before I
discuss these metrics precisely, I discuss why takeoff speeds matter.

Some reasons to care about takeoff speeds
Takeoff speed is correlated with a few factors that are strategically important. For example:

● Warning shots. How long before the point of no return do we get clear evidence of AI
risk2? What about clear evidence that AI will be transformative? All things equal, faster
takeoff means we’ll have less time to respond and there will be fewer people paying
attention.

● Time for high-impact alignment work. Before we develop AIs that pose existential risk,
we might develop AIs that are similar but do not pose existential risk. Alignment work on
these systems will probably be particularly impactful for reducing risk, because they'll be
more similar in structure and behavior to the systems that later pose existential risk. All
things equal, faster takeoff means less time to do this high-impact alignment work.

● Concentration of power. Faster takeoff means less time for AI progress to spread
around the world. All things equal, this will lead to fewer relevant AI actors and a higher
chance of an actor getting a decisive strategic advantage3.

● Changes in the strategic landscape. Slower takeoff means more time for the world to
be transformed by pre-AGI systems, e.g. dramatically changing the geopolitical
landscape of the defense-offense balance in cyber. This might favour increasing
longtermist influence in generic ways over making specific plans.

● AI timelines. Holding fixed AGI training requirements, faster takeoff means more time to
AGI because earlier systems do less to accelerate AI development. This has a number
of strategic implications. Indeed, this framework allows us to quantify this tradeoff.

These factors affect how large AI risk is overall and what actions we should take to reduce it.

3 A decisive strategic advantage is “a level of technological and other advantages sufficient to enable it to
achieve complete world domination”, Bostrom (2014), p. 78.

2 In particular, risks that could be existential as AI capabilities improve. E.g. clear evidence of misaligned
power-seeking.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.5ckfv45698rr
https://www.lesswrong.com/posts/JPan54R525D68NoEt/the-date-of-ai-takeover-is-not-the-day-the-ai-takes-over?_ga=2.25163517.639465652.1607850818-1419171175.1600033930
https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/1501227742
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In addition, having a view about takeoff speeds might allow us to make predictions about
precursors to AGI. If we’re right, we gain credibility and confidence in our views; if we’re wrong
we can update our views.

Quantifying takeoff speed
Summary: I use GDP metrics to quantify impact takeoff speed, and consider a few different
ways to quantify capabilities takeoff speed.

Quantifying impact takeoff speed
GDP is a useful impact metric because of its correlation with things like military power,
technological progress, and the total productive capacity of civilization.

I believe sufficiently advanced AI would dramatically accelerate GDP growth. Moreover, I expect
GDP growth to be steady or slow over time absent the development of sufficiently advanced AI
or a small handful of other possible breakthroughs such as some forms of radical biotechnology.
If GDP growth accelerates and we don't observe other compelling causes besides AI
advancement, then I think it will be reasonable to attribute the vast majority of that GDP
acceleration to AI advances, and thus to use GDP growth acceleration as a measure of AI
impact takeoff speed.

With this background, it is natural to identify fast takeoff with a sudden increase in GDP growth
and slow takeoff with a gradual increase in GDP growth.

Paul Christiano operationalises slow takeoff as follows:

There will be a complete 4 year interval in which world output doubles, before the first 1 year
interval in which world output doubles. (Similarly, we’ll see an 8 year doubling before a 2 year
doubling, etc.)

Intuitively, this is slow takeoff because AI has a moderately transformative impact for 8 years
before it begins to have a massively transformative effect.

Paul’s key metric here is the ratio between successive GDP doubling times. E.g. suppose
GDP doubling times are as follows: 24 years (~current rate) → 8 years → 2 years → 1 year. The
ratios in this example are 3, 4, and 2. Paul’s best guess in 2017 was that the ratios would equal
~2. So I call ratios of 4 or more ‘fast takeoff’ and ratios of 2 or less ‘slow takeoff’.

Currently, my best guess is that there are a couple of ratios that are 3 or 4 during the transition,
and then we settle down into ratios slightly less than 2. But it also seems plausible (>20%) that
we get a ratio >8, and also plausible that all the ratios are <2.

https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth
https://sideways-view.com/2018/02/24/takeoff-speeds/
https://sideways-view.com/2017/10/04/hyperbolic-growth/
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How do these ratios compare with those observed historically in global GDP? I calculated these
from David Roodman’s data set.

Year Doubling time (years)
Ratio between successive
doubling times

-5000

-3000 1293

-2000 1014 1.3

-1000 1081 0.9

-500 480 2.3

-200 493 1.0

1100 1055 0.5

1500 539 2.0

1820 223 2.4

1870 83 2.7

1913 33 2.5

1940 31 1.1

1962 26 1.2

1977 15 1.7

2000 23 0.7

2019 19 1.2

The 5 doublings since 1913 all had ratios <2; the four doublings from 1100 - 1913 all had ratios
between 2 and 3. AI impacts found that there was plausibly a ratio of >4 around the agricultural
revolution, where my table begins.

We can also use GDP to define serial time metrics of takeoff speed. The metric I currently use
is: time from 5% GDP growth to 20% GDP growth. 5% is significantly higher than the recent
rate of 3%, so it seems like a good indicator of “crazy stuff is happening”.4 5 20% is fast enough
that I expect humans are struggling to keep up with developments.6

6 For serial time metrics, AI value-add to GPD is a concrete way to define a startpoint. E.g. “AI is adding
$5 trillion / year to global GDP”.

5 We should exclude 5% growth if it’s driven by recovery from a disaster or war here. The growth should
be driven primarily by frontier technological progress.

4 The last time annual growth for one year exceeded 5% was 2006. The last time the 5-year average for
GWP growth exceeded 5% was 1974. Source.

https://docs.google.com/spreadsheets/d/1dgLD6-u1fwwIhRRtZ-aUwcbUpDSJBVAW-u03nOErmqk/edit#gid=0
https://www.openphilanthropy.org/sites/default/files/Modeling-the-human-trajectory.pdf
https://aiimpacts.org/precedents-for-economic-n-year-doubling-before-4n-year-doubling/
https://docs.google.com/spreadsheets/d/16iGZYZLdp4H3RgnCY0Hd_zEavlrox3FBLtwK-htpzW8/edit#gid=998477526
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Which type metric is better? Serial time metrics are easier to understand, but the startpoint and
endpoint are pretty arbitrary. The ratios between successive GDP doubling times is less
arbitrary, but it’s a more abstract quantity and so harder to think about.

It’s worth noting that, like any impact metric, GDP can in principle decouple strongly from AI
capabilities. For example, in the growth model I ultimately use in this report, physical capital can
strongly bottleneck GDP even as the amount of cognitive labour from AIs becomes extremely
large.7 This reflects the idea that certain physical inputs are essential to (e.g.) building a house,
and no amount of cognitive labour can replace them. As a result, going from 100 billion to 1
trillion AGIs might increase GDP by much less than 2X. I do expect this bottleneck dynamic to
apply to some extent. But I think tracking AI capabilities explicitly when they diverge from GDP
impacts is very important, so I primarily emphasise AI capability metrics (discussed below) while
also reporting GDP metrics.

Another limitation of economic metrics is that they are lagging indicators of AI capabilities.
Economic signs may only appear long after dangerous capabilities are developed.8

What about quantifying impact takeoff speed without using GDP? You could consider other
domains, e.g. military power or level of SOTA technology. I haven’t thought about how to
precisely quantify takeoff speed in these domains, but the rough idea is time from “AI makes
significant difference to the domain” to “AI is making abilities in this domain go through the roof”.
Takeoff speed can be different in different domains (more).

Quantifying capability takeoff speed
Metrics of AI capabilities typically measure performance of specific systems at narrow tasks,
e.g. error rate on a specific benchmark or cluster of benchmarks.

For takeoff speeds, though, I’d like a quantity that describes the collective capabilities of all AI
systems across all cognitive tasks. I’m not aware of a way of quantifying this that is
straightforwardly measurable. The quantities I’m using come from the growth modelI use to
estimate the effects of partial AI automation on R&D and GDP, and I think they will have
meaningful analogues in the real world. However, they are mostly not straightforwardly
measurable, at least not today. I sometimes describe these quantities as ‘metrics of takeoff’; but
by this I just mean that they quantify takeoff speed, not that they’re straightforwardly
measurable.

8 Dan Kokajlo critiques GDP metrics of takeoff speed along similar lines.

7 More precisely, if we hold the levels of physical capital and technology fixed and increase cognitive
labour to infinity, GDP only increases by ~4X in any amount of time. It only increases further once the
level of technology, or amount of physical capital, increases. I discuss this further in section 6.

https://paperswithcode.com/sota
https://www.lesswrong.com/posts/aFaKhG86tTrKvtAnT/against-gdp-as-a-metric-for-timelines-and-takeoff-speeds
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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The % of cognitive tasks that AI can readily perform
In this report, I will use "AGI" to refer to an AI system, or collection of systems9, that can readily
perform ~all cognitive tasks.

We can generalise this notion to that of AI that can readily perform x% of cognitive tasks.10

If AI can perform some tasks, but not others, how can we quantify the exact % of tasks it can
perform? To answer this, we need some way to assign a weight to each task that quantifies its
importance. I weight each task by its economic value in 2020, as measured by the total $ that
people earn while performing the task.11 Throughout the report, whenever I refer to the % of
cognitive tasks – or the fraction of cognitive tasks – I am weighting different tasks by
their 2020 economic value. I explain this concept in more detail and discuss its weaknesses in
an appendix.

With this notion at hand, we can define metrics of the form: Years from when AI can readily
perform x% of cognitive tasks to AI that can readily perform y%.

This metric ignores the question: At what cost can AI perform the task? My reason is compute is
already cheap enough that we could run a human brain for ~$10/hour.12 Compute prices will
continue to fall, so I expect that once AI can perform the task it will be able to do so more
cheaply than a human.13

Throughout this report, whenever I say that “AI can perform” a task, I mean that it can readily
perform the task.  The phrase “readily” here indicates that i) it would be profitable to do the
engineering and workflow adjustments necessary for AI to perform the task in practice, and ii)
these adjustments could be done within 1 year if organisations made it one of their priorities.

13 Two caveats.
First, if there’s large demand for AI chips when AIs are adding $trillions to the economy, this could drive
prices back up somewhat. I haven’t analysed how significant this effect could be; it will depend on how
quickly chip production can be increased to meet demand. This implies that the supply of computer chips
will be the key bottleneck of how many AIs we run.
Second, it may be that the first time AI is able to perform a valuable economic task it is very expensive to
run, and then the price falls over time. I discuss a model along these lines here. In this case, it is more
meaningful to track when it becomes profitable to actually automate cognitive tasks, as opposed to when
AI can first perform the tasks.

12 You can rent an A100 for $1/hour and it produces ~1e14 FLOP/s. A standard median estimate of
human brain FLOP/s (to the extent that’s a meaningful concept) is 1e15 FLOP/s. That implies you could
run a human brain for $10/hour.

11 More precisely, the weight of task T is proportional to the total $ people earn while performing T. For
each person, this is given by the time they spend on T multiplied by their hourly salary. In mathematical
notation: weight_T = SUM_i($ earned performing T by person i) / SUM_i($ earned by person i).

10 Example coarse-grained tasks include proofreading a document, writing a poem, checking a maths
proof, writing code to perform a specified function, generating a strategy to meet a specified objective,
giving medical advice, etc. Each of these tasks has many subtasks, which may themselves have
subtasks. The tasks in this document should be thought of as the lowest level subtasks, as then we need
not consider cases when AI can partially perform a task by performing some but not all its subtasks.

9 I drop the “or collection of AI systems” henceforth for brevity, even though this framework is most
naturally interpreted as implying that AGI will take the form of many AIs .

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.xrfouzges0mp
https://cloud.google.com/compute/gpus-pricing#gpus
https://arxiv.org/pdf/2104.04473.pdf
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That is, if the AI could in principle perform the task if humans did a lot of work restructuring
workflows and generating suitable inputs, but in practice it would take a lot of work for the AI to
do this task in practice, then the AI can not readily perform the task (as I’m using the phrase). If
only a relatively small amount of work is needed, however, then the AI can perform the task.14

The % of cognitive tasks that AI could fully automate
Imagine some AI can perform 50% of cognitive tasks, but there’s only enough runtime compute
to run one such system. In this case, AI could not fully automate 50% of tasks because we can’t
run enough AIs to replace all the human workers.

If AI can readily perform x% of tasks, and there’s enough runtime compute15 for AI to replace all
the human workers in those tasks,16 then I’ll say that AI could readily fully automate x% of tasks.
(I sometimes omit “readily”, but it is always implied.)

With this notion we can define takeoff metrics of the form: Time from AI that could readily
automate x% of cognitive tasks to AI that could readily automate y%.

This is a similar metric to the last subsection, but it relates not only to the capabilities of
individual AIs, but to how many AIs we can run in total.

The metric I mostly focus on in the report is: Time from AI that could readily automate 20% of
cognitive tasks to AI that could readily automate 100%.

How many AGIs can we run?
The Full Takeoff Model (FTM), discussed in the summary, makes assumptions or predictions
about:

● When we’ll train AGI for the first time (AI that can perform 100% of cognitive tasks).
● The FLOP/s to run AGI.

16 For AI to replace all human workers at a task, the new AI output at the task must exceed the previous
human output at that task. For example, suppose humans worldwide write 1 billion emails per day. Then
for AI to replace all human workers at the task of email writing, AIs must be able to write more than 1
billion (similarly productive) emails per day. In the model of automation I use, which I explain below, once
AI output rises a little above this level it becomes profitable for all human workers to work on new tasks
that haven’t yet been automated (e.g. to spend all their time doing things other than emails). The numbers
I report for this metric correspond to this profitability point, so are model dependent.
If previous automation has already concentrated human workers on some cognitive task, then this raises
the bar for replacing all humans at that task. E.g. if automating emails causes humans to spend more time
coding, then you’ll need more AIs to replace humans at coding.

15 But at what price? As discussed above, I expect that once AI can perform the task it will be able to do
so more cheaply than humans. (Though see earlier caveats in a footnote.)

14 Somewhat more precisely, it should take <1 year of engineering and adjusting workflows before AI can
perform the task in practice, and it should be profitable for organisations to make necessary workflow
adjustments.

https://docs.google.com/document/d/1Z7HJ9pHctgDi1XYbgRW9-7J1bxTL98KW1qb7HN7Mv-A/edit#heading=h.am8ngwncddj3
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● How many FLOP/s we can do at each point of time.

This means it can calculate the first year in which we have trained AGI and can run X AGIs, for
any X. I like this as “year when we can run 10 billion AGIs” as an endpoint signifying when
AIs’ collective cognitive abilities significantly exceed the collective cognitive abilities of
humans.17 18

Cognitive output
By “cognitive output” I mean the progress per unit time on software R&D and in other cognitive
domains like maths, strategy, persuasion, etc. The restriction to cognitive domains, to the
exclusion of tasks that require physical labour, captures the idea that disembodied AI will
automate the stuff done by the human brain but won’t (without robotics) automate physical
human labour.

My preferred unit for AI cognitive output, or for AI+human combined cognitive output, is “How
many remote19 human workers would it take to add the same amount of value?” So if AIs +
humans make some software progress in one month, and you’d have needed 1000 human
workers to make the same amount of progress in one month without AI, then the total cognitive
output of AIs + humans is “1000 remote human worker equivalents”.

Notice that in this example I looked at the total cognitive output from both humans and AIs
combined. Until we have AGI, humans and AIs are complementary to each other, so it’s hard to
separate out the cognitive output that’s due to “AI alone”.20 I view it as a benefit of this metric
that it naturally incorporates this complementarity. Another benefit is that it avoids privileging an
arbitrary capability level like ‘AGI’.

We can separate out a notion of the cognitive ‘value add’ of AI by comparing the cognitive
output that would obtain if you only had human workers (with no AIs21) with the actual cognitive
output produced by the combination of humans and AIs. If the latter quantity is twice as high,

21 Or, more precisely, with no AIs developed after 2020. (We already use AI to help us perform cognitive
tasks, and I don’t want to exclude them. I just want to exclude new AIs that automate additional cognitive
tasks.)

20 As a concrete example, let L be the number of humans and C the number of AIs. Suppose cognitive
output is given by L*C. It’s hard to attribute a fraction of this output to humans vs AIs, due to the
complementarity (in this case represented via multiplication).

19 Remote human workers because disembodied AIs won’t be able to do tasks involving physical labor.

18 Do AI’s individual cognitive abilities also exceed those of humans by this point? Not necessarily. The
framework sits most naturally with a comprehensive AI services interpretation of AGI, where no single AI
has abilities as general as an individual human (more). But my personal expectation is that very soon in
calendar time after AIs can collectively do all tasks a human can do, we’ll be able to develop a unified AI
system that exceeds humans at ~all cognitive tasks. So I do think that some AIs’ individual cognitive
abilities will exceed humans’ by this point.

17 I say “significantly” because AGI will have a number of significant cognitive advantages over humans.
To list a few: run faster in serial time, smaller % of AIs in education and retirement, smaller % of time
spent on leisure or sleeping, can use smaller models for easier tasks rather than doing all tasks with a
fixed brain size.

https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
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then the AI’s cognitive value add is 2X. With this in hand, we can define the following takeoff
speed metric: time from AI value add being 2X to it being 10X. This period begins when
cognitive output is twice what it would be absent AI, and ends when it is 10X what it would be
absent AI.22

I explain how the FTM (Full Takeoff Model) calculates cognitive output here.

Impact metrics vs capability metrics
This piece will make forecasts about impact metrics and capability metrics. How much stock
should we place in each?

I have greater trust in the forecasts of capability metrics. Forecasts of impact metrics involve
forecasting capabilities and making substantial additional23 assumptions about how those
capabilities translate into impact. Example assumptions:

● How much does lack of physical equipment or physical labour delay or reduce the
impact of advanced AI? (We discussed this briefly above.)

● How much do regulations delay or reduce the impact of advanced AI?
● How much schlep is involved in integrating advanced AI in the economy?

These additional assumptions will tend to make forecasts of impact metrics more uncertain than
forecasts of capability metrics.

In addition, the correct additional assumptions might differ in different domains. For example,
perhaps lack of physical equipment will significantly bottleneck how much AGI accelerates
technological progress, but won’t prevent AGI from giving its controller a huge military
advantage. Or perhaps regulations will prevent AGI impacting goods and services but not
software R&D. So a second advantage of capability metrics is we can make separate
judgements about how AI capabilities impact multiple different domains.

On the other hand, the capability metrics are less meaningful. In particular, they will be much
harder to measure and track over time, and are at some risk of involving made-up concepts
derived from a growth model but not grounded in reality.

23 To some extent, these additional assumptions also affect forceasts of AI capabilities. The impacts of AI
on GDP and R&D accelerate future capability developments. However, I model the effect on bottlenecks
on this feedback, and don’t expect large delays from regulations and schlep in back-end industries that
will spur further AI development like AI R&D and chip manufacturing.

22 Of course, AI may automate cognitive tasks without being agentic. If AI cognitive value add is 10X, but
AIs do not make plans and are not strategically aware of humans and the levers of power (see Joe
Carlsmith’s draft report on AI risk), this may be much less risky than if AIs do make plans and are
strategically aware.

https://www.lesswrong.com/posts/HduCjmXTBD4xYTegv/draft-report-on-existential-risk-from-power-seeking-ai
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Other metrics of takeoff speed
There are a number of other serial time metrics of takeoff speed that seem plausibly useful. For
example:

● Time from “AI that causes >30% of world leaders to realise that AI will be transformative”
to “AI that gives its controller a decisive strategic advantage”

● Time from “misaligned AI that blatantly seeks power” to “AI that causes existential
catastrophe if it’s misaligned”.

● Time from [weaker AI capability that is strategically significant] to [stronger AI capability
that is strategically significant]

There will be no straightforward way to get predictions about these metrics from my framework.
To do this, we’ll have to translate the AI capabilities that feature in these metrics into the
language of the framework. This means mapping them to the rate of GDP growth, the % of 2020
cognitive tasks that have been automated, the number of AGIs that can be run, [the AI multiplier
on cognitive output], or some other quantity that can be calculated by the model.

Summing up
We can distinguish between capabilities takeoff speed and impact takeoff speed, and have
reasons to care about both. Impact takeoff speed might be more important, and it can be
quantified using GDP metrics that are well grounded. Capabilities takeoff speed might be easier
to predict, and it can be quantified using a few different metrics that are less well grounded. The
Full Takeoff Speeds Model I’ll explain during the next few sections will make predictions about
all the metrics I’ve mentioned.

3. Basic framework for calculating takeoff speed
I recommend skipping this section except that part that estimates the size of the effective
FLOP gap. The rest just recaps Bio Anchors and explains the basic framework for
thinking about takeoff speeds a little more slowly than in the long summary.

This section presents a very basic first-pass framework for thinking about takeoff speeds. It
describes a simple extension you can make to the bio-anchors framework to get an estimate of
takeoff speed.

In short, we first use the biological anchors framework to estimate the FLOP needed to train
AGI. Then we add an additional assumption about the FLOP needed to train some weaker AI.
Lastly, we estimate how quickly we can ramp-up training FLOP between these two points. This
gives us the calendar time from the weaker AI to AGI, one metric of takeoff speed.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
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The rest of this section explains this basic framework in more detail. Later sections expand upon
it by i) analysing how increased AI investment and incremental AI automation might affect the
ramp-up of training FLOP, and ii) modelling the effect of AI automation on economic growth.

Bio anchors recap24

Ajeya Cotra’s biological anchors report (hereafter, "Bio Anchors") articulates a framework that
can be used to estimate when we’ll train AGI,25 via estimating when we’ll have enough compute
and software to do so.26

In particular, it uses analogies with biological systems and trends in ML to estimate the FLOP
required to train AGI using 2020 algorithms. That is, if AI algorithms had frozen at their 2020
levels and a multi-year concerted effort had been made to train AGI, how many FLOP would
have been sufficient to succeed?

The bio-anchors report also estimates how the size of our training runs will change over time.
One tricky element here is algorithmic progress: we can achieve more with each FLOP in 2025
than in 2020. To incorporate this, we can measure the size of training runs in units of
2020-FLOP, meaning “How many FLOP would have been needed to train a system with these
capabilities using 2020 algorithms?” Software progress increases the number of 2020-FLOP
that are available from a fixed budget of FLOP.

The 2020-FLOP used in a training run can be calculated by multiplying together three quantities:
1. $ on training FLOP. How much is spent on the training run?
2. FLOP/$. How many FLOP does each $ buy us? This increases over time due to

hardware progress.
3. Software multiplier. How many times more efficient are today’s algorithms than 2020

algorithms? E.g. if we could train AGI today using half as many FLOP as we’d have
needed in 2020, the software multiplier equals 2.

a. The unit for software is 2020-FLOP per FLOP. I.e. each FLOP today
corresponds to multiple 2020-FLOP because algorithms have improved.

Writing this as an equation:
2020-FLOP = $ on FLOP * FLOP/$ * 2020-FLOP per FLOP

26 Specifically, Bio Anchors estimates when we’ll have enough computation to train one unified AGI
system. This is aggressive because we might actually achieve AGI earlier via many distributed cheaper
systems, but it’s conservative because there are inputs to developing AGI other than computation (e.g.
data).

25 The report actually focuses on forecasting a slightly different target: transformative AI, defined as AI
which increases the rate of economic growth by ~10X. But the same framework can be used for
forecasting AGI, and this use-case will be more useful for our purposes. In what follows, I’ll talk as if the
report was forecasting AGI, to simplify the exposition. The difference will matter later because AGI is
plausibly harder to develop than TAI, and we’ll adjust the report’s output for this fact.

24 Here I give a dense summary of the relevant points; readers without familiarity might want to read a
summary (here or here), listen to part of this podcast, or read the full report.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
https://www.alignmentforum.org/posts/cxQtz3RP4qsqTkEwL/an-121-forecasting-transformative-ai-timelines-using#The_overall_framework
https://www.cold-takes.com/forecasting-transformative-ai-the-biological-anchors-method-in-a-nutshell/
https://80000hours.org/podcast/episodes/ajeya-cotra-worldview-diversification/#ai-timelines-report-012924
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
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Let’s call the FLOP needed to train AGI using 2020 algorithms the AGI training requirement
(notice that it’s in units of 2020-FLOP). When the 2020-FLOP used in a training run exceeds the
AGI training requirement, bio anchors forecasts that we will train AGI.

Extending bio anchors to estimate one metric of takeoff speed
Bio anchors estimates the training requirements for AGI, measured in 2020-FLOP. If we add an
additional assumption about the training requirements for some weaker AI system, we can
estimate the calendar time between training the weaker system and training AGI via the growth
of the 2020-FLOP used in training runs. This in turn depends on the growth of its three
components: $ on FLOP, FLOP/$ and 2020-FLOP per FLOP.

Concrete example
Let’s go through a concrete example to illustrate this idea.

Suppose bio anchors estimates that the 2020-FLOP AGI training requirement = 1e36.27 I.e. it
would take 1e36 FLOP to train AGI using 2020 algorithms. Then we additionally estimate that
some weaker AI would take 1e30 FLOP to train using 2020 algorithms.

Then the serial time between the weaker AI and AGI is simply the time to increase the
2020-FLOP used in training runs by 6 OOMs.28 How long will this take? It depends on how
quickly the three components of 2020-FLOP grow after we’ve trained the weaker AI. Let’s make
the following assumptions:

1. $ on training FLOP has a growth rate of 30%.
2. FLOP/$ has a growth rate of 40%.
3. 2020-FLOP per FLOP has a growth rate of 40%.

The growth rate of 2020-FLOP used in the largest training run is related to the growth rates of
its components as follows:
g(2020-FLOP) = g($ on FLOP) + g(FLOP/$) + g(2020-FLOP per FLOP)

So the 2020-FLOP used in a training run has a growth rate of 30+40+40 = 110%.29 This implies
that it takes 13 years to increase 2020-FLOP by 6 OOMs.30 So we’d estimate the time from the
weaker AI system to AGI as 13 years.

30 e^(1.1*12.6) = 1 million.

29 Note, this is an instantaneous growth rate, distinct from the annual growth. The former equals e^gt; the
latter equals (1 + g)^t. The benefit of using the former is that you can add growth rates of the components
to get the growth rate of the 2020-FLOP. They’re similar when g < 0.1.

28 OOM = order of magnitude

27 Bio anchors places a probability distribution over the 2020-FLOP AGI training requirement, and I will
ultimately do the same. For now though, I will proceed using point estimates to simplify the exposition.



14

Comments on the concrete example
Firstly, the specific endpoint (AGI) and startpoint (some weaker AI) that I used here could be
changed. E.g. you could use the startpoint “misaligned AI that blatantly seeks power” and the
endpoint “AI that causes existential catastrophe if misaligned”.

However, the startpoints and endpoints that we can use are still fairly limited at this stage. They
must both correspond to some 2020-FLOP training requirement for the methodology to work.
This is plausible if they refer to some AI capability level. We can’t yet use startpoints/endpoints
that refer to the number of AIs; e.g. we can’t use the endpoint “can run 10 billion AGIs”.
Endpoints like this have a runtime computation requirement as well as a training requirement
and we’re not yet modelling the available runtime computation.31 Also, we can’t yet use
startpoints/endpoints that refer to GDP growth, because I haven’t introduced the constructs
needed to calculate GDP. Later, with the Full Takeoff Speeds Model, we’ll have the option to use
these additional startpoints and endpoints.

Secondly, it’s worth highlighting the structure of the calculation in the concrete example. It has
two key inputs.

A. The effective FLOP gap between the startpoint and endpoint. In our example this was 6
OOMs. The effective FLOP gap’s precise meaning is: how many more FLOP would it
take to train [endpoint AI] than [startpoint AI], using 2020 algorithms.

a. Note: I sometimes just refer to it as the “FLOP gap” for short rather than
the “effective FLOP gap”, but I always mean to refer to the effective FLOP
gap.

B. The speed crossing the gap, g(2020-FLOP). In our example, 2020-FLOP had a growth
rate of 110%, increasing by ~0.5 OOMs per year. The precise meaning is: what is the
average growth rate of 2020-FLOP between [startpoint AI] and [endpoint AI].

31 In the Full Takeoff Speeds Model, it turns out that the endpoint “can run 10 billion AGIs” typically comes
very quickly (<2 years) after training AGI because AI automation causes hardware and software to
improve extremely rapidly around this time and AGI training compute is so high that you’re not too far off
being able to run 1 billion AGIs by the time you’ve trained AGI. So the endpoint “train AGI” approximates
the endpoint “can run 10 billions AGIs”.



15

If we measure the effective FLOP gap in OOMs and measure g(2020-FLOP) in OOMs per year,
we get the simple equation:

serial time to cross FLOP gap = FLOP gap / g(2020-FLOP)
= FLOP gap / [g($ on FLOP) + g(FLOP/$)
+ g(2020-FLOP per FLOP)]

The rest of this section is organised as follows. First I briefly discuss considerations informing
the effective FLOP gap. Then I state my bottom line about g(2020-FLOP) and compare it with
the view implicit in bio-anchors.

Note, the report’s main metric “time from AI that could readily automate 20% of cognitive
tasks to AI that could readily automate 100%” implicitly makes reference both to whether
AI could perform the tasks and to whether we can run enough AIs to replace humans at
the tasks. So at this stage I can only calculate this metric by i) defining “weaker AI” as AI
that can readily perform 20% of tasks, and ii) assuming that there will be enough runtime
compute to automate tasks once AI can readily perform them (which is not true when AGI
training requirements are low).

Evidence about the size of the effective FLOP gap
The choice of effective FLOP gap presupposes some startpoint and some endpoint. For
concreteness I’ll use startpoint = AI that can perform 20% of cognitive tasks, endpoint = AGI (AI
that can perform ~100% of cognitive tasks). Crossing the effective FLOP gap involves going
most of the way in capability space from today’s AI to AGI. This input to takeoff speeds is
second only to AGI training requirements in terms of being very important but very uncertain.
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I think Hans Moravec's "rising tide of AI capacity" visualisation is useful for framing this
discussion (h/t David Schneider-Joseph for this point). Currently AI can only do a small fraction
of cognitive tasks – the areas of the map that are currently underwater. Over time the AI
capabilities improve (the tide rises) and AI can perform more and more tasks. Eventually, AI can
readily perform all cognitive tasks (everything is under water).

Hans Moravec's "rising tide of AI capacity" can help us think about the meaning of the effective FLOP gap

For our purposes, we should imagine the surface area of the landscape to be proportional to the
tasks’ economic value in 2020. (Or, if we’re thinking about R&D automation, proportional to the
task’s share of R&D.) Then the effective FLOP gap tells us how much more effective training
compute we need to cover all the landscape compared to just 20% of it.

There are a few factors that can weakly inform the choice of effective FLOP gap:
● AGI training requirements bound it from above.
● SOTA AI capabilities weakly bound it from below.
● Horizon length suggests it could be pretty big.
● How AI capabilities vary with training FLOP between different domains provides an

estimate.
● How AI capabilities vary with training FLOP within a domain provides a low-end

estimate.
● How animal capabilities vary with brain size provides a low-end estimate.
● How human capabilities vary with brain size provides a low-end estimate.
● Practical barriers to partially automating tasks suggest it could be very small.

I’ll discuss each factor in turn.
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● AGI training requirements. As of today the largest training run is ~3e24 FLOP.32 My
median guess is that AGI training requirements are 1e36 2020-FLOP,33 so my median
effective FLOP gap can be no bigger than 12 OOMs. More generally, shorter AI
timelines lead to a smaller effective FLOP gap.

● SOTA AI capabilities. In my opinion, today’s AI systems are not close to being able to
readily perform 20% of all cognitive tasks done by human workers. (Actually automating
these tasks would add ~$10tr/year to GDP.34)

a. Based on this, and my rough sense for how much progress we’re getting with
each additional OOM (informed by looking at scaling papers and playing around
with GPT-2 and GPT-3), I’d want to put my startpoint above 1e27 2020-FLOP.

b. Another rough-and-ready approach is to naively extrapolate recent trends in AI
value-add and model size. This suggests the startpoint should be >3e28
2020-FLOP.

■ The data I could find suggests AI value-add is doubling roughly every 2
years,35 over which time training runs have increased by ~1 OOM.36 The
largest training run as of July 2022 is ~3e24. If today’s systems could
readily add $500b/year to the economy, that would correspond to
automating ~1% of cognitive tasks.37 If each doubling of value-add
continues to take ~1 OOM, AI won’t automate 20% until >3e28 FLOP.38

c. Overall, I’d want to put my startpoint above 1e27 2020-FLOP and probably
above 1e28 2020-FLOP. But if I condition on AGI requiring (say) 1e30
2020-FLOP then I’d want to make it lower.

● Horizon length.39

a. Suppose we automate some economic tasks using a horizon length of 1 second
but training AGI requires a horizon length of 1 year with the same model size or
bigger. This implies a effective FLOP gap of >7.5 OOMs.40

40 There are 30 million seconds in a year.

39 This concept is from bio anchors. Ajeya defines it as follows: How much data the model must process
(on average) to tell with a given level of confidence whether a perturbation to the model improves
performance or worsens performance.

38 The bound would be higher if I used a number below $500b, or if I included software progress. OTOH,
value-add per OOM of training FLOP may rise.

37 World GDP is ~$100tr, about half of which is paid to human labour. If AI automates 1% of that work,
that’s worth ~$500b/year.

36 Epoch’s piece.

35 E.g. here, here, here, here.  I don’t know how reliable these estimates are, or understand their
methodologies.

34 World GDP is ~$100tr, about half of which is paid to human labour. If AI automates 20% of that work,
that’s worth ~$10tr/year.
[This is a bit aggressive, as many tasks have a component of physical labour (though all have some
cognitive component). On the other hand, AI will probably produce more output at those tasks than the
humans they replace (as they’re cheaper to run), increasing their value-add.]

33 The Bio Anchors best-guess median training requirement for TAI is 1e35; I add 1 OOM to account for
AGI being harder than TAI.

32 I believe these were the requirements for PaLM.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://ourworldindata.org/grapher/labor-share-of-gdp?tab=chart&country=NGA~NPL~HRV~OWID_WRL
https://arxiv.org/pdf/2202.05924.pdf
https://medium.com/dataseries/artificial-intelligence-market-size-a99e194c184a
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.globenewswire.com/news-release/2022/04/19/2424179/0/en/Artificial-Intelligence-Market-Size-to-Surpass-Around-US-1-597-1-Bn-By-2030.html
https://www.statista.com/statistics/941835/artificial-intelligence-market-size-revenue-comparisons/
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://ourworldindata.org/grapher/labor-share-of-gdp?tab=chart&country=NGA~NPL~HRV~OWID_WRL
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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b. My median guess would be that, compared to this, the startpoint will require
longer horizons and we will train AGI with shorter horizons. So my extremely
tentative takeaway would be that the effective FLOP gap is >5 OOMs.41

c. I put (even) less weight on this consideration than the others because the
usefulness of the 'horizon length' concept is debatable and I don’t know whether
the startpoint-AI will use a very different horizon length to AGI.

d. If I condition on very large training requirements for AGI, however, I become
more convinced by this consideration. At that point I think AGI requires very long
horizons, but still think that short horizons will produce significant economic
value.

● How AI capabilities vary with training FLOP between different domains. How much
do training FLOP requirements vary across different tasks or domains?

a. AI has strong comparative advantages in some domains relative to others.
Probably, less training FLOP will be needed for automating human work in
domains like these. Indeed, this is how AI can already perform at super-human
level in some domains. There are many mechanisms that can give AI
comparative advantages at some tasks but not others:

■ Some tasks can be performed by AI with “short horizon training”, others
require “long horizon training”.42

■ Some tasks require strong sim2real transfer.
■ Some tasks are more similar to tasks used in AI pre-training.
■ Some tasks have much more available data from demonstrations or

human feedback.
■ Some tasks benefit from memorising lots of information.
■ For some tasks it’s important to “always be on” (no sleep), or to

consistently maintain focus (no getting bored or slacking).
■ For some tasks, it’s much easier to verify that an answer is correct than to

generate the correct answer.
■ People choose to develop specialized AI architectures and training

processes for some tasks but not others.
■ Some tasks require very high levels of reliability (e.g driving vs drafting an

email).
b. GPT-N task performance.

■ Lukas Finnveden has extrapolated the performance of GPT-N on a variety
of benchmarks. You could look at the graphed extrapolations to compare
the (predicted) training FLOP needed to solve different benchmarks. In
the linear extrapolation, the first benchmark exceeds a score of 90% ~4
OOMs before the last benchmark. In the sigmoid extrapolation, the gap is
~5 OOMs. So we’re on ~4-5 OOMs.

42 This concept is from Bio Anchors. Short horizons means that the model only needs to “think” for a few
seconds for each data point; long horizons means the model needs to “think” for months for each data
point and so training requires much more compute.

41 There are ~5 OOMs between a “10 second” horizon length and a “1 month” horizon length.

https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance#How_impressive_are_the_benchmarks_
https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance#Comparisons_and_limits
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#
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● Both extrapolations omit the task with the worst SOTA
performance (ANLI).

● On the other hand, they both include the text-completion task,
which is very similar to GPT’s training task. Omitting this lowers
the estimated effective FLOP gap to ~4 OOMs.

■ As before, this scaling would be smaller using Chinchilla scaling laws, and
perhaps smaller still the scaling law we’re on when we start crossing the
effective FLOP gap. So I’ll reduce that gap to ~3 OOMs.

■ How does the gap for the extrapolated benchmarks compare to the gap
we might see for economically valuable tasks? I expect the latter gap to
be bigger. These benchmarks were selected (in part) for being
appropriately challenging to SOTA LMs, which will narrow the range of
difficulty between them. Economically useful tasks will not have this
selection pressure, and are generally much more varied in general (e.g.
they’re not all language based). I’ll tentatively add another 2 OOMs for
this.

■ So overall I take this consideration to suggest that the effective FLOP gap
is >3 OOMs and use a tentative best-guess of ~5 OOMs.

c. RL vs transformer training FLOP
■ AlphaStar had 139 million parameters43 and took ~2e23 FLOP to train.44

GPT-1 had a similar number of parameters (117 million) but only took
1e19 FLOP to train. That’s a difference of 4 OOMs.

● The difference is probably partially due to AlphaStar having a
longer horizon length, and I discussed horizon length above. But
other factors contribute, like the use of league-based training and
training data being more noisy.

■ I think this is representative of a broader pattern of RL systems having
several OOMs more training FLOP than similarly-sized LMs (where size is
measured in parameter count, or in FLOP per forward pass).

● [Someone could check this by looking at Xland.]
■ If some economically valuable tasks will be automated by transformer

architectures of a certain size but other tasks are only automated by RL
systems of a similar size, then I’d expect the effective FLOP gap to be >4
OOMs.

■ This would combine with other sources of a wide effective FLOP gap.
d. To sum up:

■ AI comparative advantages: suggests that the gap is wide in general.
■ GPT-N: >3 OOMs, ~5 OOMs.
■ RL vs transformer: maybe implies an additional ~4 OOMs.

e. Overall, I interpret this ‘training FLOP differences in different domains’
consideration as suggesting that the effective FLOP gap is >3 OOMs, weakly

44 From eyeballing figure 3 of Compute Trends Across Three Eras of Machine Learning.
43 See page 3 here.

https://medium.com/walmartglobaltech/the-journey-of-open-ai-gpt-models-32d95b7b7fb2#:~:text=Model%20architecture%20and%20Implementation%20Details%3A%20GPT%2D2%20had%201.5%20billion,%2D1%20(117M%20parameters).
https://arxiv.org/pdf/2202.05924.pdf
https://arxiv.org/pdf/2012.13169.pdf
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suggesting a best guess of ~5 OOMs, and lending plausibility to amounts as high
as ~8 OOMs.

● How AI capabilities vary with training FLOP within one domain. When you increase
training 2020-FLOP within one domain, how much do capabilities improve? What
increase in training FLOP is needed to cross the human range?

a. GPT-N. I believe GPT-3 required about ~2.5 OOMs more training 2020-FLOP
than GPT-2.45 People familiar with both systems can use the difference to intuit
how much performance improves with more training FLOP. Intuitively, the
difference is pretty big! My extremely rough sense is that once AI can readily
perform 20% of language based tasks, you’d need ~two similar-sized
improvements before it could readily perform all language based tasks,46

suggesting an effective FLOP gap of ~5 OOMs.
■ The difference in training FLOP between GPT-2 and GPT-3 would be

smaller with the new Chinchilla scaling law, and by the time we’re
crossing the effective FLOP gap we may be using better scaling law still.
(For example, certain prompting or fine-tuning or aggregation techniques
may improve how much total performance increases with scale, as
suggested by figure 3 here.) So I’ll put my overall estimate here at ~4
OOMs.

b. Other papers on "scaling laws" could potentially be similarly informative here.
■ The LM-scaling papers I’ve glanced at, seem broadly consistent with the

above, with ~2 OOMs of training FLOP improving the score on large
aggregations of benchmarks (e.g. BIG-Bench, MMLU) by ~10-40%.

c. Go. The difference between an intermediate amateur Go player and the best in
the world is ~2800 Elo.47 Marginal doublings of training FLOP improved
AlphaGo’s Elo by ~300 - 700.48 This implies that ~4 - 9 doublings of training
FLOP are needed to cross the human range, or ~1 - 3 OOMs. I put more weight
on this than the GPT comparison, as the comparison to human abilities is more
grounded.

■ Though given that we’re talking about the effective FLOP gap for
economic value, we should make the startpoint when you can get paid for
your performance. If we measured the difference from “a bit below
professional” to “best in the world”, the Elo gap would be less than half as
big.49 Then the FLOP to cross the range would be ~0.5-1.5 OOMs.

d. So to sum up:

49 The world’s best Elo is 3800, Go’s “professional” range starts at 2700 Elo, while and Elo corresponds to
“advanced amateur”. Using 2400 Elo as the start point would give us a “human range” of 1400 Elo.

48 From figures 3, 4 and 5 of the AGZ paper. See reasoning on this sheet.
47 See this sheet.

46 Obviously, comparing the qualitative capability gap between GPT systems to the gap between
top-performing and low-performing humans is fraught. One worry is that we’re less able to notice
intelligence differences between systems much dumber than us, compared to systems similarly intelligent
to us.

45 This data suggests GPT-3 took ~100X more training FLOP; I’m assuming ~3X algorithmic
improvements on top of that.

https://arxiv.org/pdf/2206.07682.pdf
https://arxiv.org/pdf/2206.07682.pdf
https://arxiv.org/pdf/2202.07785.pdf
https://arxiv.org/pdf/2210.09261.pdf
https://arxiv.org/pdf/2206.04615.pdf
https://discovery.ucl.ac.uk/id/eprint/10045895/1/agz_unformatted_nature.pdf
https://docs.google.com/spreadsheets/d/184MRogfxoxaWupEV2F1O3kdomAUb-cNY8kvV1RoI0Wg/edit#gid=0
https://docs.google.com/spreadsheets/d/184MRogfxoxaWupEV2F1O3kdomAUb-cNY8kvV1RoI0Wg/edit#gid=1935258151
https://arxiv.org/pdf/2202.05924.pdf
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■ GPT-N scaling: ~4 OOMs
■ Go: ~1 OOM

e. These results underestimate the effective FLOP gap because crossing the
human range in one domain is easier than crossing the range across all
economically valuable tasks. I.e. they ignore the above point of AI having
comparative advantages at some domains over others.

■ This is especially true for Go, which is just one game.
■ It’s only somewhat true for GPT-N, as the full space of cognitive tasks

isn’t that much broader than language-based tasks.
f. So overall I interpret this as suggesting >4 OOMs as a soft lower bound, and ~5

OOMs as a very tentative best guess.
● How animal capabilities vary with brain size.

a. One comparison here is humans vs chimps. Human brains are probably ~3X
bigger than chimp brains (in terms of FLOP/s),50 and there is arguably a large
gap in cognitive abilities. Perhaps humans have an additional ~3X from software
improvements.  If you think “chimp → human” is enough to cross the effective
FLOP gap, this implies a effective FLOP gap of ~1 - 2 OOMs.51

b. Rat brains are 2 OOMs smaller than human brains (in terms of synapses and so
FLOP/s). Perhaps accounting for software, the difference is 3 OOMs. It’s not
crazy to me that rats could perform 20% of cognitive tasks if they’d been selected
to do so. This suggests an effective FLOP gap of ~4-6 OOMs.52

c. I find the chimp comparison more plausible.
d. Both approaches ignore AI having comparative advantages at some tasks over

others, so underestimate the gap.
e. Overall, I see this as lending weight to effective FLOP gaps as low as 1 OOM,

and weakly suggesting a best-guess of ~3 OOMs.
● Brain size - IQ correlations within humans. 53

a. There’s a few decent-seeming papers that estimate the correlation between brain
volume and IQ. My conclusion from a few hours looking at these was that a 10%
increase in brain volume might cause a gain of ~4.5 IQ points. More.

53 I’ve largely taken this line of reasoning from this doc by Paul Christiano.

52 Two methods: Method 1 anchors to runtime FLOP/s, method 2 anchors to total lifetime learning FLOP.
Method 1: 3 OOMs bigger brain → 3 OOMs more runtime FLOP/s → 6 OOMs more training FLOP with
Chinchilla scaling.
Method 2: 3 OOMs bigger brain and 1.5 OOM longer childhood → 4.5 OOMs more training FLOP.

51 Two methods: Method 1 anchors to runtime FLOP/s, method 2 anchors to total lifetime learning FLOP.
Method 1: Human runtime FLOP/s is ~10X bigger (including software gains), implying 100X more training
FLOP with Chinchilla scaling.
Method 2: Human lifetime learning uses ~3X more FLOP than chimps as the learn for about the same
length of time. Bump this up to 10X for better software for learning. Then assume training FLOP will be
proportional to lifetime learning FLOP. Method 2 assumes ML training-run scaling will be as good as
hominid life-learning scaling. Hominid scaling might be better because the life-learning algorithm is better
than our training algorithms; it might be worse because it doesn’t scale data optimally with brain size but
we will be able to do this in ML.

50 Chimps have about 3X fewer neurons than humans, and the data in figure 4C of this paper suggests
they have a little over 3X fewer synapses. (Synapses are closer to what we care about for estimating
FLOP/s.)

https://docs.google.com/document/d/1m0HZ4b1X3NQfIz5XCtXTAoSxm8mSx2oTjsoJ1kzXk5g/edit#
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://academic.oup.com/view-large/figure/267080014/bhaa149f4.tif
https://academic.oup.com/cercor/article/30/10/5604/5850230
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b. If we assume that brain volume is proportional to brain FLOP/s, then a 10%
increase in brain FLOP/s causes a gain of 4.5 IQ points.

■ Between primates, it seems like # neurons and # synapses are roughly
proportional to brain volume, confirming this assumption.54

■ It seems that within humans, brain volume is more slightly anti-correlated
with neuron density, implying that a 10% increase in brain FLOP/s could
have a larger effect on IQ.55 For now, I’ll err conservative and leave this
out.

c. In line with the spirit of Bio Anchors, I’ll assume that a 10% increase in AI model
size (measured in FLOP/s) has the same impact on IQ as a 10% increase in
human FLOP/s.56 [I’ll later consider a more aggressive assumption.]

d. So 10% bigger AI model size → ~4.5 IQ points.
e. So a 10X bigger AI model → ~24 10% increases in model size57 → ~110 IQ

points.
f. Let’s assume training FLOP increases with the square of model size.58 Then

100X more training FLOP → 10X bigger model → ~24 10% increases in model
size59 → ~110 IQ points.

g. Intuitively, going IQ 45 → IQ 155 would cross the effective FLOP gap (initially
able to perform <20% of economic tasks → then able to perform ~100%). So this
naively suggests an effective FLOP gap of 2 OOMs.

h. You could plausibly end up with a smaller effective FLOP gap:

59 ln(10)/ln(1.1) = 24.2

58 I.e. Chinchilla scaling. The basic rationale here is double the FLOP/s → double the # parameters →
double the # data points needed for training. Also double the FLOP/s → double the FLOP per data point.
With 2X the data points and 2X FLOP per data point, training FLOP increases 4X.

57 ln(10)/ln(1.1) = 24.2

56 An increase in AI model size might be better than human brain size due to the ability to do more
calculations in series, or because we’ll make small and easy adjustments to AI algorithms to make them
suited to the new scale.

55 Pakkenberg & Gundersen 1997 (N=94) is the only thing I’m aware of studying correlations between
brain volume and neuron or synapse count in humans (thanks to Tegan for sharing). Bottom line: I think
the data naively imply a 10% increase in FLOP/s would add 5.8 IQ points. I may have made a math
mistake though.
Figure 4 shows that brain volume is anti-correlated with neuron density (# neurons per unit volume), so
that an 85% increase in brain volume is only associated with a 61% increase in neuron count. This
implies that each 10% increase in brain volume increases neuron count by 7.7%, with humans. (I.e #
neurons = volume^0.77.) Assuming FLOP/s per neuron is constant, each 10% increase in brain volume
increases FLOP/s by 7.7%. So a 10% increase in FLOP/s would be equivalent to a 13% volume increase
and increase IQ by ~5.8 IQ points. (4.5*1.3=5.8.)
We can sense-check this using the raw correlation between neuron count and brain volume reported in
table 3. The correlation is 0.71. This is broadly consistent with 0.77 from above, as neuron count had
larger variance than brain volume. (E.g. If 1 SD of brain volume was 5% of the mean brain volume, then 1
SD of neuron count was >5% of the mean neuron count.)

54 I expect # synapses to be proportional to FLOP/s. Figure 4A of this paper finds the # synapses per unit
volume is constant. If neurons matter, this paper claims the # neurons is slightly less than proportional to
volume (# neurons = volume^0.9). (Would be interesting to check if these two claims are consistent with
the slight increase in synapses per neuron observed in figure 4C of the first paper.)
This paper claims the number of neurons is proportional to brain volume and

https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096-9861(19970728)384:2%3C312::AID-CNE10%3E3.0.CO;2-K
https://academic.oup.com/view-large/figure/267080014/bhaa149f4.tif
https://academic.oup.com/cercor/article/30/10/5604/5850230?login=true
https://www.pnas.org/doi/10.1073/pnas.1201895109#sec-1
https://www.pnas.org/doi/10.1073/pnas.1201895109#sec-1
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■ Assume training compute is proportional to lifetime learning compute.
Humans with bigger brains don’t get more “data” (experience) to learn
from, so a 10X bigger human brain would use only 10X as much compute
to learn. Anchoring to this, we might need to only use 10X as much
training compute, an effective FLOP gap of 1 OOM.60

■ Use a smaller IQ gap. If we used IQ 70 → IQ 125 then the effective FLOP
gap would halve to 1 OOM.

■ Doing both of the above reduces the effective FLOP gap to 0.5 OOMs!
i. Overall, I take the estimate here to be ~1 OOM.
j. Again, a very significant counterpoint is that early AIs will have strong

comparative advantages at some tasks over others. E.g. someone with IQ 45
can’t multiply 7 digits numbers in their heads, and yet we have calculators.

k. Overall, I see this as lending some plausibility to gaps as low as 0.5 OOMs as
well as weakly suggesting a best-guess of ~2-3 OOMs.

● Practical barriers to partially automating tasks.
a. A high-level task like “present on topic X” might have many subtasks like “learn

about X”, “plan the presentation”, “write the presentation”, “check for errors”,
“deliver the presentation”. These subtasks themselves have many further
subtasks (“search for relevant articles”, “extract relevant information from
articles”), and so on.

b. Before AGI, a lot of AI’s economic impact will probably come from partially
automating high-level tasks; i.e. from automating some subtasks but not others.61

c. But partial automation may be difficult in practice, e.g. if it involves integrating AIs
in complex workflows. For example, suppose an AI can write a presentation from
a suitably formatted plan. Using this AI to partially automate “present on topic X”
would require somehow creating a plan in a format suitable for the AI.

d. This could mean that, in practice, it is only when AI is close to being able to fully
automate a high-level task that it does significant amounts of partial automation.

e. In addition, it may be the case that AI is able to fully automate most high-level
tasks at about the same time because they require similar capabilities (or similar
subtasks).

f. Combining the above two bullets, we may automate most high-level tasks at
about the same time and only achieve significant partial automation of high-level
tasks shortly before full automation.62 This implies there might only be a short gap

62 One concrete way to think about this is as follows. Suppose there are 100 tasks on the lowest level.
Each high-level task requires 90 of them, so there’s lots of overlap between high level tasks. But it’s only
possible to partially automate a high-level task once 80 out of its 90 lower level tasks can be automated,
due to practical difficulties with partial automation. Now imagine low-level tasks are automated one by one
in random order. In this toy model, all the high-level tasks will be automated at a similar time (when we’re

61 AI may also allow us to restructure the high-level task entirely so the necessary subtasks change, and
automate some of the new subtasks. It may also allow us to do new kinds of high level tasks.

60 This implicitly assumes human lifetime-learning scaling via increasing brain size is as good as ML
scaling by increasing training FLOP. Lifetime learning might be better because the life-learning algorithm
scales better than ML training algorithms; it might be worse because ML algorithms can scale the amount
of data optimally with training FLOP, unlike lifetime-learning.
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from “begin to significantly automate some high-level tasks” to “fully automate
~all high level tasks”.

g. This all pushes towards a smaller effective FLOP gap, somewhat smaller and
perhaps significantly smaller than we’d have otherwise thought.

h. This effect is significantly increased by the fact that my definition of “AI can
readily perform task X” is “it would be profitable for organisations to do the
engineering and workflow adjustments necessary for AI to perform task X in
practice and they could make these adjustments within 1 year if they prioritised
them”.

■ If it takes many decades to cross the effective FLOP gap, there would be
much more time to rearrange workflows to allow for partial automation.
However, the numbers I’m getting out of the full takeoff speeds framework
suggest we’d cross even a large effective FLOP gap in <20 years.

This table summarises my very tentative takeaways from each factor.

Factor How it informs the
effective FLOP
gap

My tentative takeaway
for the effective FLOP
gap

How much relative weight I
place on each
consideration (1-5)

AGI training
requirements

Constrains the
endpoint

Low AGI training
requirements bound the
effective FLOP gap
from above.

5

SOTA AI capabilities Constrains the
startpoint

3

Horizon length Directly informs
choice of effective
FLOP gap

>5 OOMs 2 (more if training
requirements are large)

How AI capabilities
vary with training
FLOP between
different domains

Directly informs
choice of effective
FLOP gap.

>3 OOMs
~5 OOMs (best guess)
~8 OOMs is plausible

4

How AI capabilities
vary with training
FLOP within a domain

Directly informs
choice of effective
FLOP gap.

>4 OOMs
~5 OOMs

3

How animal
capabilities vary with
brain size

Directly informs
choice of effective
FLOP gap

~1 OOM is plausible
~3 OOM best-guess

2

How human
capabilities vary with

Directly informs
choice of effective

~0.5 OOM is plausible
~2-3 OOM best-guess

3

close automating all 100 low-level tasks) and each partial automation of a high-level task only happens
shortly before full automation.
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brain size FLOP gap

Practical barriers to
partially automating
tasks

Argument for a
small effective
FLOP gap

Effective FLOP gap
smaller

4

Overall, before taking into account AGI training requirements my best guess for the effective
FLOP gap is ~4 OOMs,63 but I wouldn’t be surprised by 1 OOMs or 8 OOMs.

If I condition on low AGI training requirements of 1e30 2020-FLOP the first two factors bite hard
and my best guess is ~2-3 OOMs; if I condition on large AGI training requirements of >=1e38
2020-FLOP the “horizon length” factor and “How AI capabilities vary with training FLOP
between different domains” comes into play more and my best guess is ~5-6.

What bio-anchors says about speed crossing effective FLOP gap
The effective FLOP gap is measured in 2020-FLOP. The bio anchors report projects its three
components over time. In Ajeya’s best guess sheet their growth rates are as follows:

1. $ on FLOP for a training run initially doubles every 2.5 years (growth rate 28%) until it
reaches 1% of US GDP. Then its growth rate is 3%.

2. FLOP/$ doubles every 2.5 years (growth rate 28%) until it reaches a maximum.64

3. 2020-FLOP per FLOP doubles every 2-3 years (growth rate ~28%) until it reaches a
maximum.65

This implies that g(2020-FLOP in the largest training run) is initially ~84%66 and then slows
down to ~59%67. This corresponds to 0.36 OOMs per year initially followed by 0.26 OOMs per
year. At the faster pace, it would take 11 years68 to cross an effective FLOP gap of 4 OOMs; at
the slower pace it would take 15 years.69

Summing up and looking ahead
I’ve introduced a first-pass framework for calculating some metrics of takeoff speed. At the
moment, it can calculate the calendar time between training some weaker AI and some stronger
AI; it cannot calculate metrics relating to the number of AIs or their effects on GDP.

69 4/0.26 = 15
68 4/0.36 = 11
67 3 + 28 + 28 = 59
66 28 * 3 = 84

65 The precise doubling time depends on the biological anchor. For medium and long horizon anchors it is
2 years, for short horizon anchors it is 3 years.

64 The growth rate slows somewhat when the maximum is near.
63 One thing informing this is calculating a weighted average using an adjusted version of the above table.

https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
https://docs.google.com/spreadsheets/d/1_vrVsMiavZiuoD7oTx4kRhE8IEM7Xxgp0L9bU4_N-l8/edit#gid=0
https://docs.google.com/spreadsheets/d/1750IJMfCJd88gnhXiUKm3NwVs9Ir4lesOwJF8bAfFpc/edit#gid=0
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In this framework, the takeoff speed depends on the size of the effective FLOP gap and our
speed crossing it. Our speed crossing it is given by the equation g(2020-FLOP) = g($ on FLOP)
+ g(FLOP/$) + g(2020-FLOP per FLOP).

The next few sections extend this basic model. Section 4 estimates g(2020-FLOP) in the run-up
to AGI, based on the effect of fast rising AI investments. Section 5 models the effect of
incremental AI automation in the run-up to AGI. The infrastructure introduced here allows us to
calculate metrics based on the number of AIs and on their effects on GDP. Section 6 discusses
bottlenecks. Later sections perform sensitivity analyses, discuss its many limitations, and come
to an all-things-considered bottom line.

4. Rising AI investments
I would treat this section as providing detailed parameter estimates for important inputs
to the Full Takeoff Model. In particular, it estimates the pace at which human investments
on the largest AI training run, hardware R&D and software R&D will grow. It also
estimates the returns to hardware and software R&D. It then infers how fast takeoff will
be from human investment alone, essentially calibrating this toy model.

Summary
I believe pre-AGI systems have the potential to increase GDP by $10s trillions and probably
$100s trillions per year. Given this, and the fact that AI investments are currently in the $10s
billions (sources below), I expect human investments in AI to grow very rapidly after key actors
“wake up” to the potential economic and strategic70 value of AI. While governments and chip
manufacturers and investors are aware that AI is strategically important, I claim their actions
implicitly significantly underestimate its transformative potential.

This section analyses the effect of this fast-rising investment on the three components of
2020-FLOP.

The numbers in this section are best characterised as “wild guesses informed by weakly
relevant empirical data”. As such, the uncertainties are very high. That said, here are my
tentative central estimates.71 After “wake up” I guess that:

● $ on FLOP in the largest training run will initially grow at ~97%, and then later at
~22%

○ $ on FLOP globally will grow at ~22%, based on how quickly I guess we’ll be
able to expand chip production after “wake up”.

71 For now I’m leaving these all at 2 significant figures so I don’t lose information about the centres of my
subjective distributions, but 1 significant figure would be much more appropriate given the magnitude of
the uncertainties involved.

70 e.g. via military and security applications.

https://docs.google.com/spreadsheets/d/1bWqaGGti-ILpDA7G0I9kNjBmHVrkfqgS9TkHanOFYxU/edit#gid=0
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○ % global FLOP on the largest training run will grow at ~75%, and have 1 - 3
OOMs room to grow in total.

● FLOP/$ will eventually grow at up to ~88% (recently ~25%), driven by real $ hardware
investment growing at ~17% (recently 5%). But it will take many years before it grows
this quickly, gradually accelerating from its recent pace of doubling every ~3 years.

● 2020-FLOP per FLOP will grow at ~31%, driven by real $ software investment growing
at ~25% (recently ~20%).

This section often refers to growth rates. If you prefer thinking in terms of doubling times, use
this converter.

Background - “waking up” to advanced AI’s economic potential
I believe AGI would drive explosive economic growth - Gross World Product (GWP) growing at
>= 30%/year. I think less powerful AI could drive multiple doublings of GWP. Nominal GWP is
$85tr, and so doubling GWP even once involves adding ~$80tr to the global economy (starting
from now). In other words, on my view, pre-AGI systems have the potential to generate many
$10s or $100s of trillions per year.

Annual investments into hardware and software for AI development are 2-4 OOMs smaller:
● All hardware. Total semiconductor industry revenues are $550 billion; semiconductor

R&D is ~$70 billion and semiconductor capex was ~$130 billion.
● AI hardware. The size of the AI chip market is probably ~$20 billion;72 AI targeted chip

R&D is maybe a few billion $.73

● AI software. I’d guess annual spending on software workers for SOTA AI is $10-100
billion.74

I haven’t dug into these numbers and this is important further work.

I believe that before AGI is developed, many key actors75 will “wake up” to the potential for
advanced AI to generate $10s trillions per year. At the very latest, this will happen when pre-AGI
systems actually produce this much value; probably it will happen much earlier, as the potential
to automate large swathes of cognitive labour becomes apparent from impressive demos.

Once this “wake up” occurs, I expect investments in AI to scale up as quickly as possible until
they are worth $ trillions per year.

75 Governments of powerful nations, leaders of large tech companies, militaries.
74 DeepMind annual spending is ~$1b. I’d guess total AI spend is 10 - 100X this.

73 NVIDIA R&D in 2021 was ~$4 billion, and they’re estimated to be 80% of the market share for AI chips.
I’m not sure how much of the $4 billion was spent on R&D for AI chips vs other R&D.

72 See footnote 48 of this CSET report; also informed by an unpublished memo by a CSET researcher.

https://docs.google.com/spreadsheets/d/11WLXLpYeVCVtA_hcP7LOAJrBwQGcAfCtICkEmNTW4xQ/edit#gid=0
https://www.openphilanthropy.org/research/could-advanced-ai-drive-explosive-economic-growth/
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
https://www.statista.com/statistics/266973/global-semiconductor-sales-since-1988/
https://www.onlinecomponents.com/en/blogpost/2021-semiconductor-rd-spend-to-rise-4-357/
https://www.statista.com/statistics/864897/worldwide-capital-spending-in-the-semiconductor-industry/
https://www.gwern.net/docs/reinforcement-learning/deepmind/2021-deepmind-fullaccounts.pdf
https://www.statista.com/statistics/988048/nvidia-research-and-development-expenses/
https://omdia.tech.informa.com/pr/2021-aug/nvidia-maintains-dominant-position-in-2020-market-for-ai-processors-for-cloud-and-data-center
https://cset.georgetown.edu/wp-content/uploads/AI-Chips%E2%80%94What-They-Are-and-Why-They-Matter.pdf
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This section analyses the consequences of this fast-rising investment for the growth of
2020-FLOP used in the largest training run, g(2020-FLOP). I consider each of its three
components separately: $ on FLOP, FLOP/$, and 2020-FLOP per FLOP. First, though, two
sections about how I’m thinking about the dynamics of investment ramp up once the “wake up”
has occurred.

In what follows, I’ll assume that we have had “wake up” by the time we start crossing the
effective FLOP gap. This need not be true. But for my startpoint of “automate 20% of cognitive
tasks”, I think it’s very likely. Automating 20% of cognitive tasks, on a naive calculation, would
increase GDP by 25% which is ~$20 trillions.76

$ on FLOP for the largest training run
I break this component down into two subcomponents:

$ on FLOP for the largest training run = $ on FLOP globally * fraction of global FLOP on the
largest training run

Let’s discuss each in turn.

$ on FLOP globally
I believe that, after “wake up”, the total amount of global FLOP will be bottlenecked by how
quickly we’re able to design better chips and manufacture them rather than by willingness to
pay.77

For this reason, I’m thinking primarily in terms of “how quickly can the world overcome
production bottlenecks to produce more FLOP” rather than “how quickly will people increase
their $ spending on FLOP”. In line with this, and as a part of a toy simplification discussed in this
appendix, I’m interpreting “$ on FLOP globally” as meaning something like “number of chips
globally”. Analogously, I’m interpreting FLOP/$ as “FLOP per chip”. This means, among other
things, that I’m ignoring the fact that after “wake up” rising demand will increase the price of
chips of a fixed quality.78

78 See more.
77 I say more about this in an appendix.

76 If the only effect [of automating 20% of cognitive tasks ] is to concentrate human workers on the
remaining 80% of tasks, you’ll have 25% more workers per task on that remaining 80%. (100/80 = 1.25.)
So the effective labour supply is 25% bigger; as a result you’ll accumulate 25% more capital and so GDP
will increase 25%. (Here I make the standard assumption there are constant returns to labour and capital
in combination.) This bottom line is too high in ignoring the non-cognitive labour that is not automated; this
might reduce it by 2X. However, it is too low in ignoring the benefits of improving performance and
throughput on the automated cognitive tasks, which could increase it by 2X.
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How fast will the world be able to ramp up production of chips, when it’s doing so (roughly
speaking) as quickly as possible?79 This is a thorny empirical question, which deserves much
more attention than I’ve given it. This table summarises some weakly relevant quantities:

Quantity Growth rate80 Comment on relevance to g($ on on
FLOP globally) after “wake up”

Semiconductor revenue
growth.

6 - 18% Demand will be much higher after “wake
up”.

TSMC revenue growth. 14 - 29% Demand will be much higher after “wake
up”. TSMC can potentially steal experts
from rival companies.

Growth of munitions
production at war time.

20 - 45% Semiconductor supply chain is much more
complex than munitions.

Time to build a fab.

(Assumes that this equals
the doubling time in the
number of fabs.)

14 - 35% My assumption about doubling times
seems aggressive.

In a little more detail:
● Semiconductor revenue growth.

○ This grew at a rate of 6% from 2012-20 and a rate of 18% from 2018-20.
○ The higher rate might be a better indicator of the maximum capacity for growth,

and thus of the growth after “wake up”. On the other hand, it could reflect a
temporary effect or a spike in demand (that wasn’t reflected in an increase in
supply).

○ My takeaway is a very weak pull to numbers in the ballpark 5%-20%.
● TSMC revenue growth.

○ Semiconductor revenue growth is constrained by demand. This is less true for an
individual corporation like TSMC that can take market share from its rivals by
growing its own output. So TSMC’s growth may mirror growth after “wake up” in
that neither is constrained by demand.

80 Reminder: the growth rates here and throughout this report are instantaneous growth rates, not
per-year growth figures. For example, if the instantaneous growth rate is 40% then the increase in one
year is e^0.4 = 1.49X, which corresponds to a per-year growth of 49%.

79 To simplify the main text, I elide the distinction between the annual production of FLOP, and the total
stock of FLOP. Mathematically, it turns out that if the former grows at a constant rate, so does the latter.
So here I estimate the growth rate of the former and use this as a proxy for the latter. However, this can
lead us astray: if the growth rate of the former increases, there is a lag before the growth rate of the latter
increases in step. So this distinction is included in the Full Takeoff Model (FTM), so is incorporated in the
results of the sensitivity analysis in section 8. The effect is to make takeoff slightly slower.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
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○ This grew at 14% from 2011-21 and 29% from 2019-21.
○ Its capital expenditures will grow at 35% from 2018-2022. This suggests the fast

revenue growth is not mainly “more demand leads to higher prices for the same
amount of real output”.

○ On the other hand its number of employees only grew at 8% from 2009-2020 and
at the same rate from 2018-2020. I’d be surprised if you could sustain 30%
growth in output for very long without growing your employees faster than this.

○ TSMC is potentially able to hire talent from other companies to help it scale,
which may make these numbers too high. On the other hand, after “wake up”
there will be (much) more willingness to pay and so I expect  expansion efforts to
be more aggressive even than TSMC’s recent expansion.

○ My takeaway is a weak pull towards numbers in the ballpark 15-30%. I find
this more informative than the semiconductor numbers.

● Growth of munitions production at war time.
○ This is an example of “growth of a specific industry’s output when there is very

large demand”.
○ I looked at munitions output for countries involved in WW2. Growth rates were

mostly between 20% and 45%, with the US as high as 80% (though from a much
lower base as a fraction of their GDP).

○ I’d expect it to be harder to grow semiconductor output because its supply chain
is notoriously complicated, probably much more so than munitions. E.g. this
growth involved a lot of refitting existing factories to make munitions, which won’t
be possible for cutting edge computer chips.

○ My takeaway is a weak pull towards numbers in the 20 - 30% range.
● Time to build a fab.

○ From a quick google, estimates vary from 2 - 5 years.81

○ If this is also the doubling time for the number of fabs after “wake up”,82 that
implies a growth rate of 14% - 35%. The assumption that the doubling time for
fabs is the time it takes to build them feels aggressive to me.

○ My takeaway is a weak pull towards numbers in the 10 - 25% range.
● Growth of the AI chip market. It’s growing at a rate of ~30%. Naively, you’d expect

growth to slow after it becomes a majority of semiconductors, but maybe the demand
after “wake up” will allow it to continue at its current pace. Not convincing to me as its
current growth is probably enabled by displacing production of other chips rather than
creating additional production capacity.

I find the first quantity least informative, and the last three quantities similarly (un)informative as
each other. My best-guess central estimate here is a growth rate (for $ on FLOP globally) of
~22%.83 I’d be surprised if the true figure was <10% or >40%. <10%, as well as falling outside

83 Here’s how I arrived at this number. For the last three quantities my takeaway was a weak pull towards
the ranges 15-30%, 20-30%, and 10-25%. Taking the average of the midpoint of each range gives (22.5 +
25 + 17.5)/3 = 22.

82 The toy model here is that we’re able to leverage the expertise of each existing fab to build another
one, and meanwhile train people up to work there.

81 This website says >2 years; this one says 3-5 years; this discusses an example that took 2.5 years.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=967246273
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=967246273
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1569027567
https://www.dpr.com/assets/news/2002-06-01-semiconducotr-mag.pdf
https://www.extremetech.com/computing/322695-why-we-cant-build-our-way-out-of-the-semiconductor-shortage
https://semiwiki.com/semiconductor-manufacturers/tsmc/2212-how-long-does-it-take-to-go-from-a-muddy-field-to-full-28nm-capacity/
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the range of the last three quantities, just feels very low for a world that’s trying its best to
expand chip production. >40% implies a production doubling time of <21 months, which seems
very quick given the staggering complexity of the production process and the requirement for
workers with specialized skills.

When will this growth in $ on FLOP globally top out? The Full Takeoff Speeds Model currently
assumes it continues until we’re spending 10% GWP annually on FLOP, ~$10 trillion today. Why
30%? Currently ~60% of GDP is paid to human wages; when AI plays a similar role to human
brains we might pay a comparable % of GDP to rent chips to run AIs on. (I reduce the 60% to
10% to account for other costs of running AI systems and the possibility that we pay less for
running AIs than we currently pay to human wages, e.g. due to being bottlenecked by
non-cognitive inputs to production.)84

Ok, I’ve explained how I’m thinking about the first component of $ on FLOP for the largest
training run; now let’s discuss the second component.

Fraction of global FLOP on the largest training run
In my mind there are two important sub-questions here. First, how much room will there be in
total to scale up the fraction of global FLOP used on the largest training run? This determines
how many OOMs of the effective FLOP gap we can cross without even increasing the number
of chips in the world.

Second, how quickly will we be able to scale up in this way? This determines how quickly we’ll
cover those OOMs.

If there’s many OOMs here, and we can cover them quickly, this could drive a very fast takeoff.

How much room to scale up the fraction of global FLOP used on a training run?
Drew Lohn from CSET has contracted with us and spent ~10 hours estimating the amount of
FLOP currently available globally. Measured in terms of the FLOP we could perform by running
the chips non-stop for a year for perfect utilisation, he estimates ~2e28 FLOP from discrete
GPUs,85 ~4e28 FLOP from discrete+integrated GPUs, and ~2e29 if you include the large
numbers of lower performance CPUs used in (e.g.) phones.86 In my view, these numbers are
very uncertain and could easily be wrong by an OOM.

86 Drew Lohn actually estimated FLOP/s from the chips produced annually. I obtained these numbers by
assuming the global stock of chips is 2X annual production.

85 As opposed to integrated GPUs, which are incorporated as part of a device like a laptop.
84 In practice, in the Full Takeoff Model we typically get AGI before spending 10% GWP on FLOP.
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I think a realistic maximum for the fraction of global FLOP that could be used in the largest
training run is probably ~10%.87 That could involve, for example, using 30% of the world’s
compute in a training run that lasts for 4 months. This already feels somewhat aggressive, but
there will be economic incentives to combine compute together in big training runs and online
learning will be a significant factor. Using 10%, the realistic maximum for FLOP used in the
largest training run is currently 2e27 - 2e28 FLOP.

I believe the largest publicly available training run as of July 2022 is ~2e24,88 implying that the
room for scale up is currently ~3 - 4 OOMs.

Of course, this quantity will change over time. I think the room for scale up will reduce over the
next decade. Here’s an extremely rough estimate. Extrapolations of growth of the AI chip market
imply growth of 15X by 2030; but the total quantity of global FLOP will grow by less, let’s say
~5X.89 Meanwhile, I expect the $ spent on the largest training run to increase by ~400X in that
time.90 This implies that the room to scale will fall by ~2 OOMs to ~1 - 2 OOMs by 2030.91 For
now, the Full Takeoff Speeds Model is assuming that this won’t change after 2030 until “wake
up”.92

For our purposes – estimating the time it will take to cross the effective FLOP gap – what
matters is how much room for scale up will remain once we reach the startpoint. If we reach the
startpoint around or after 2030, I expect ~1 - 2 OOMs room for scale. If we reach the startpoint
before 2030, I expect somewhere between that and the current room for scale up (~3 - 4
OOMs); I’ll call it ~1 - 3 OOMs.

When will we reach the startpoint? The startpoint is measured in 2020-FLOP used for a training
run. A $1b training run in 2030 would use ~2e29 FLOP, based on the bio-anchors extrapolations
of FLOP/$ and 2020-FLOP per FLOP.93 So people with startpoints lower than 2e29 2020-FLOP
should expect us to reach the startpoint before 2030.

Startpoint, 2020-FLOP Reach before 2030? Room left for scale up when we
reach the startpoint

93 See calc.

92 I.e. it assumes that after 2030 training runs will scale up at the same pace as global FLOP until “wake
up”.

91 In the FTM the median room for scale in 2030 is ~1 OOM because it uses the “discrete GPU” category
as its median.

90 It’s estimated that PaLM cost ~$10m to train. My median guess is that the largest 2030 spend is ~$4b,
in line with Bio Anchors’ projections. That’s a 400X increase. (I believe AI companies can buy FLOP ~3x
cheaper than if I were to rent GPUs on the cloud, so in practice it may cost them more like ~$1b.)

89 The 5X is for $ on “discrete GPUs”, which can still grow significantly as a fraction of fab production. If
we used the broader category of all GPUs and CPUs, I’d expect lower growth.

88 I believe these were the requirements for PaLM.

87 This, together with my earlier assumption that we might ultimately spend 30% GWP on FLOP, implies
that we’d spend 3% GWP on FLOP for the largest training run. This is a lot; Bio Anchors caps this at
0.25%. But remember that an AGI training run will be happening in a world where AI systems are already
generating $10s trillion per year.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
https://docs.google.com/spreadsheets/d/1yobQZCnqmSLpP0gEeJRIpl3sN7NUoSjwAJON-jCemtk/edit#gid=0
https://blog.heim.xyz/palm-training-cost/
https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
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<2e29 2020-FLOP Yes 1 - 3 OOMs

>2e29 2020-FLOP No 1 - 2 OOMs

How quickly will we increase the fraction of FLOP used on a training run?
A naive approach here is to anchor off the scale up over the last decade. I roughly estimate that,
in 2012-2018, the fraction of AI chips used in a training run grew at a rate of ~150%.94 That’s an
OOM every 18 months.95 If we scale similarly fast after “wake up”, we’ll reach the maximum in
just a few years.

However, I believe that the engineering barriers to further scaling will be much more significant
than in the past, e.g. in building the infrastructure for training to be efficiently distributed over
many chips in parallel. I don’t know how long these problems will take to overcome; this is an
area where further empirical research is needed.

Another big uncertainty is how hard it will be to adjust manufacturing processes to produce AI
specialised chips rather than other chips. I’d guess that this will be easier for discrete GPUs
than for CPUs.

My current wild guess is that after “wake up” enough effort will go towards this that we will scale
up at a pace of an OOM every ~2 years. That amounts to a growth rate in the fraction of
chips on the largest training run of ~110%.96 But it’s conceivable to me that we will do 2
OOMs in one year with sufficient effort (~450%), and conceivable that we can only do an OOM
every 4 years (~55%).

The strategic importance of scale up
This dynamic of scale up could drive an extremely fast takeoff. If the effective FLOP gap is small
(<=2 OOMs), room for scale up is large (>=2 OOMs) and scale up happens quickly, we may
cross the effective FLOP gap extremely quickly. Concretely, this might look like one big actor
making a deal with TSMC or NVIDIA to buy the majority of their output for a year, using this to
100X the largest training run so far, and thereby blasting through the OOMs for FLOP around
which AI capabilities are most concentrated.

There’s a counter-intuitive implication here. One sure-fire way to avoid this scenario is to scale
up training runs before we reach the startpoint (before AIs become really capable). That way
there’s no room left to scale when we hit the startpoint. Of course, there are considerations

96 e^(1.1*2) = 9.
95 e^(150%*1.5) = 9.5.

94 In 2012 - 2018 training FLOP increased by 300,000X, corresponding to a growth rate of 210%.
exp(2.1*6) = ~300,000. To get the growth in the fraction of FLOP we need to subtract out the growth of
total FLOP. Let’s subtract 30% for growth of FLOP/$ and 30% from growth in $ on FLOP, leaving 150%.
[Do this again with Jaime’s numbers for the longer period?]

https://openai.com/blog/ai-and-compute/
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which argue in the opposite direction,97 so this doesn’t imply that we should in fact scale up
training runs today.

Summing up $ on FLOP for a training run
There are two sources of growth for this quantity: increasing the $ on FLOP globally98 and
increasing the fraction of FLOP on a training run. Mathematically:
g($ on FLOP for a training run) = g($ on FLOP globally) + g(fraction of FLOP on a training run)

My very rough best guesses are:
● g($ on FLOP globally) = ~22%, probably between ~10% and ~40%.
● g(fraction of FLOP on a training run) = ~75%, with room for 1 - 4 OOMs of growth here in

total (more likely towards the lower end).
● So g($ on FLOP for a training run) is initially ~97% and later ~22%.

This concludes the discussion of how rising AI investment after “wake up” might affect $ on
FLOP;99 the next section analyses the same question for FLOP/$.

FLOP/$
How might rising AI investments after “wake up” affect FLOP/$?100 The most salient mechanism
is that they increase R&D efforts towards making better chips and increasing FLOP/$. In 2000 -
2020, real $ inputs to hardware R&D have grown slowly at ~4% a year. Faster input growth after
“wake up” should accelerate growth of FLOP/$.

How can we estimate the size of this effect? My approach is to:
1. Use historical data to fit an economic model relating hardware R&D inputs to increases

in FLOP/$. The fitted model implies that each doubling of cumulative inputs leads to
5.2 doublings in FLOP/$.

2. Forecast how quickly inputs will grow after “wake up”.
a. I guess that annual R&D inputs might grow at a rate of 17%.
b. If cumulative inputs grew at 17%, the model implies that FLOP/$ will grow at  5.2

* 17% = 88%, ~9 month doubling.
c. But, importantly, I’m currently forecasting that cumulative inputs will initially grow

at their current pace of ~4%, and that their growth rate will gradually increase to

100 Remember I’m ignoring the possibility that compute prices are significantly bid up, and using a
simplification in which all increases in FLOP/$ are due to hardware R&D (and all increases in $ on FLOP
and due to scaling up production of chips).

99 I compare my $ on FLOP forecasts with those from Bio Anchors in this appendix.
98 As mentioned above, I’m excluding the effect of “bidding up the price of compute”.

97 For example, scaling up training runs today might cause “wake up” and thus bring AI timelines forward
by many years, reducing time for safety work, movement building, and other preparations.

https://docs.google.com/spreadsheets/d/1bGbzR0c3TqsRYTWS3s6Bysgh9ZOuKS1w6qH1SOI11iE/edit#gid=186138651
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17%. This implies growth in FLOP/$ will gradually increase from its recent rate of
doubling every ~3 years.

I’ll discuss each step in turn.

Economic model relating hardware R&D inputs to outputs
I’m using what economists typically consider to be the best model of R&D - the
semi-endogenous growth model (SEG).101 Its distinctive advantage, compared to the
alternatives, is that it quantifies the extent to which ideas are getting harder to find, or the extent
to which there are diminishing returns to doing more research.102

One way to understand the core of the model is as saying:103

Each time cumulative inputs double, the output metric doubles r times

So for each x% increase in cumulative R&D inputs, the output metric will increase by r*x%.104

The inputs could be measured in $ or in (quality-adjusted) researcher-years; the output metric
can similarly vary.

Estimating r for hardware
What happens when we fit a SEG model to this data on hardware inputs and outputs? I did this,
taking the inputs to be real $ invested in semiconductor R&D105 and the output to be measured
FLOP/$.106

106 I got my FLOP/$ from the Bio Anchors appendix, top of p.29. I read off FLOP/$ values for 1970, 2008
and 2018, see rightmost columns here. (Note, this data doubles-up as data on the growth of FLOP/s per

105 I got my dollar input data from Are ideas getting harder to find. I took their numbers for nominal $
hardware investment, using their category ‘PatentNarrow (include equipment)’. I extend their data after
2015 based on recent growth in R&D inputs (rows 41 - 46). Then I adjust these nominal $ inputs for
inflation. See calcs here.

104 Then in what sense are “ideas are getting harder to find”? Somewhat confusingly, economists define
“one idea” as a 1% increase in the output metric. Early R&D models implied that every such increase
would require the same absolute increase in cumulative inputs. But this model implies that the cumulative
input increase required grows over time. The smaller r, the more effort must increase from one idea to the
next. More precisely, compare the effort needed to double the output metric on two consecutive occasions
(e.g. increasing it from 5 to 10, and from 10 to 20). The effort for the second doubling is greater by a
factor of 2^(1/r).

103 How does this relate to the standard presentation of the theory in terms of the stepping on toes
parameter lambda and the fishing out parameter phi? r = 1 / (1 - phi). If lambda < 1 then we should adjust
our description of what the core of the model to ‘For each x% increase in cumulative effective R&D
inputs, the output metric will increase by r*x%’, and add that the effective input in each year is
input^lambda.

102 As such, it’s the model used in the famous paper by that name.

101 To my mind most of the alternatives are pretty implausible, so being “the best” is means something like
“being broadly consistent with the empirical evidence and not having significant noticeable flaws” rather
than being well confirmed.

https://docs.google.com/document/d/1qjgBkoHO_kDuUYqy_Vws0fpf-dG5pTU4b8Uej6ff2Fg/edit#heading=h.xi6z3buznjb7
https://docs.google.com/spreadsheets/d/1bGbzR0c3TqsRYTWS3s6Bysgh9ZOuKS1w6qH1SOI11iE/edit#gid=0
https://web.stanford.edu/~chadj/IdeaPF.pdf
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
https://docs.google.com/spreadsheets/d/1bGbzR0c3TqsRYTWS3s6Bysgh9ZOuKS1w6qH1SOI11iE/edit#gid=186138651
https://web.stanford.edu/~chadj/IdeaPF.pdf
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The following table summarises the calculation:

Time period g(cumulative inputs) g(FLOP/$) Estimated hardware
returns, r

1970 - 2018 7.9% 53% 6.7

1970 - 2008 8.5% 61% 7.1

2008 - 2018 5.4% 23% 4.3

2006 - 2022 (GPUs) 5.4% 28% 5.2

If you prefer thinking in terms of doubling times rather than growth rates, use this converter.

The calculation is simple. For each time period, r = g(FLOP/$) / g(cumulative inputs).

So the data suggest that returns to hardware R&D were very good from 1970 - 2008, with each
doubling of cumulative inputs leading to 7 doublings for FLOP/$. Returns have been less good
recently, with each doubling of inputs driving a little over 4 doublings of FLOP/$. Though if you
focus on GPUs, returns look a little better.

I’ll take the GPU figure, 5.2 as my median estimate of the current value of r. It could be higher if
there’s a reversion to the longer-run historical returns, or it could be lower if returns are worse
today than in the period 2008-2018. Additionally, the Full Takeoff Speeds Model assumes that r
decreases towards 0 as FLOP/$ approaches physical limits.

(There is a subtlety in accounting for the stepping on toes effect, where doubling the real $
investment in a given year less than doubles the progress that year due to barriers to
parallelising research. I discuss this in an appendix.)

How quickly might hardware R&D inputs grow after “wake up”?
How quickly could we grow real $ inputs to R&D when we’re trying very hard after “wake up”?107

This is another input where the best I have been able to do is point to weakly relevant empirical
trends. Here are some:108

● Growth of US federal R&D around WW2.
○ The US made a notable effort to expand R&D during and after WW2, so may be

an indicator of how quickly R&D efforts can be expanded.

108 All figures give the growth of real $ inputs unless stated otherwise in a footnote.

107 I’m explicitly not including the $ value of AI systems used to do hardware R&D in this section. That is,
I’m forecasting the growth in the real inputs of human labour and non-AI capital. The next section gives a
separate treatment of the effect of incremental AI automation on the pace of R&D progress.

$, as the appendix applies a constant conversion factor from FLOP/s to FLOP, assuming chips are
deprecated after 2 years). For GPU FLOP/$, I got data from Epoch’s analysis.

https://docs.google.com/spreadsheets/d/11WLXLpYeVCVtA_hcP7LOAJrBwQGcAfCtICkEmNTW4xQ/edit#gid=0
https://www.lesswrong.com/posts/c6KFvQcZggQKZzxr9/trends-in-gpu-price-performance
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○ Examples:
■ Defense R&D grew at 15% from 1950 to 1962.
■ Civilian R&D (which includes many sectors) grew at 17% from 1950 to

1966, though probably total R&D grew more slowly than this.
■ Space R&D grew at 36% from 1954 to 1966, though from a small base.
■ Total federal R&D grew at 11% from 1937 - 1953 (I think this number is

sketchy).
○ I think the financial incentive for hardware R&D will be greater after “wake up”,

but it will be growing from a higher base. My takeaway is a weak anchor to
10-30%.

● Historical growth of semiconductor R&D inputs.
○ These grew at 10% initially, and this growth rate has gradually declined over time

(see above).
○ Again, the incentive to grow R&D will be much greater after “wake up”, but it will

be growing from a much larger base. I’m not sure how these net out.
● Historical growth rate for other areas of R&D.

○ Are Ideas Getting Harder to Find contains estimates of the growth of inputs for a
number of fields; numbers range from 2% to 10%.109

○ I’d expect hardware inputs to grow at or above the higher end of this after “wake
up”.

● Recent growth of R&D in hardware companies whose revenues are growing
quickly.

○ These provide evidence about how quickly hardware companies grow R&D when
there is lots of demand for their output.

○ Examples:
■ ASML R&D grew at 17% from 2016 - 2021.
■ NVIDIA R&D grew at 19% from 2016 - 2021, and 14% from 2005 - 2021.
■ TSMC R&D is growing at 4 - 5%. (Their capital costs are growing much

more quickly than this.)
○ My takeaway is a weak anchor to ~20%, as the demand will be higher still after

“wake up”.
● Growth of R&D relating to covid-19.

○ From January 2020 to June 2020, the number papers published related to covid
grew by almost 2 OOMs.110

○ While I doubt the new authors were adding nearly as much value as existing
experts, and the initial base is clearly much smaller for covid, this was an update
for me towards scientists’ ability and willingness to pivot to new fields.

● [Any other ways ppl think of to inform a guess at this?]

110 See the “Sell it” section of this Matt Clancy substack post.

109 The growth rate of real $ are probably slightly higher, as the paper uses a different measure of inputs.
Its units are “salary of a high-skilled worker”, and I think a “high-skilled worker” is operationalised as a
graduate. So if graduate salaries have gone up in real terms, the paper’s growth rates will underestimate
growth as measured in real $.

https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1190077077
https://web.stanford.edu/~chadj/IdeaPF.pdf
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=513612130
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1423870254
https://www.taiwannews.com.tw/en/news/3954592
https://mattsclancy.substack.com/p/building-a-new-research-field?token=eyJ1c2VyX2lkIjozMjM5Mjc4NywicG9zdF9pZCI6NDY3MTU1MzUsIl8iOiJvNXNkOSIsImlhdCI6MTY0MjIxOTYwOSwiZXhwIjoxNjQyMjIzMjA5LCJpc3MiOiJwdWItMjI1NzQiLCJzdWIiOiJwb3N0LXJlYWN0aW9uIn0.-TNae_6wGN5Cb5yJTd9YFpTYmJgaks9RAEh2ZPqlSzs
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My best-guess central estimate here is an input doubling time of ~3.5 years, which is a growth
rate of ~17%. This is a little higher than the trends above, but I expect there to be huge demand
once $ trillion training runs are on the table,111 and sufficient numbers of high-skill people who
can add value (e.g. who currently work in finance, physics, other areas of materials science) for
the field to double every 3 - 4 years. I’d be surprised if this <8% as 8% is not unusual for the
growth of R&D fields. Similarly I’d be surprised by >35% because i) even space R&D did not
grow faster than this from a small base in the 1950s, and ii) doubling the semiconductor R&D
field in just 2 years (35% growth) feels like a pretty tall order.

When will this growth top out? The Full Takeoff Speeds Model currently assumes it continues
until we’re investing 3% GWP annually, ~$2.5 trillion today. That’s ~35X larger than today’s
figure of $70b, allowing for ~20 years of 17% growth.

Why a ceiling of $2.5 trillion? One anchor is that annual semiconductor revenues today are
~$550b while R&D is ~$70b: a ratio of six. If annual semiconductor revenues are growing
towards being worth $30tr, as I assume above, then that same ratio implies that R&D should be
growing towards $5tr. I’m reducing that to $2.5trillion because total global R&D spend today is
only ~$2 trillion.

Growth of FLOP/$ after “wake up”
If cumulative inputs grow at 17%, and r = 5.2, FLOP/$ will grow at 5.2 * 17% = 88%. That’s
roughly a 9-month doubling.

There is an important caveat. There is a difference between annual and cumulative inputs. If
annual inputs suddenly start growing at 17% (rather than their current ~5%), there is a lag
before cumulative inputs grow at the new faster rate.112 So if faster growth of annual R&D
inputs coincides with the startpoint, there will be a >10 year lag before FLOP/$ grows at
the new quicker rate.

This dynamic – the distinction between annual and cumulative inputs – is modelled explicitly in
the Full Takeoff Model (FTM).

I worry the FTM is conservative for modelling the response to “wake up” merely via a faster
growth rate in annual hardware R&D spending, rather than also including a one-time jump in
spending. A one-time jump would reduce the lag before FLOP/$ grows at the new quicker rate,
and could significantly reduce the time crossing the effective FLOP gap.

112 In fact, the growth rate of cumulative inputs gradually increases from the old growth rate of annual
inputs to the new growth rate of annual inputs. Also, it turns out a larger “stepping on toes” effect causes
a longer lag before output grows at the new pace, see more here.

111 If you’re going to spend $1 trillion on FLOP for a training run, it’s worth spending $500 billion on R&D to
double FLOP/$. Current semiconductor R&D is only $70 billion.
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This concludes the discussion of how AI investments after “wake up” might affect trends in
FLOP/$. Now I turn to how they might affect 2020-FLOP per FLOP.

How big is the relevant bucket of hardware R&D?
The Full Takeoff Model (FTM) uses ~$80b as the hardware R&D spend in 2022, the figure for
semiconductor R&D spend.

But you might choose to use a larger figure if you include the potentially-larger buckets of
computing and electronics or materials science.113 The logic for inclusion would be that, in the
long run, semiconductor R&D progress is reliant in progress in these broader areas. Using a
This would leave less room for investment to hardware R&D to grow before reaching a cap; it
might also change the historical growth rates of R&D spending.

Alternatively, you might choose to use a smaller figure if you restrict to hardware R&D
specifically targeted at improving chip design for AI use-cases. This would leave more room for
R&D spending to grow, and probably imply recent historical growth of R&D spending was
higher.

In reality, the smaller bucket is probably more relevant over shorter timescales (where existing
node sizes can be specialised for AI algorithms) but the larger bucket will become increasingly
relevant over longer time periods (where entirely new computing paradigms must be invented).
This means the FTM might underestimate R&D progress in the short term but overestimate
progress in the long term.

This model implies that hardware progress will continue to slow down
before “wake up”
The above data show that growth of FLOP/$ has slowed over time. The semi endogenous
growth model I’m using predicts some but not all of that slowdown, because the growth of
cumulative hardware inputs has also slowed over time (but not by as much). This gives us some
reason to prefer it to a simple trend extrapolation.

But, in the near term, it seems like the growth of cumulative R&D hardware inputs will continue
to slow.114 So the semi endogenous growth model predicts that the growth of FLOP/$ will
continue to slow during the 2020s. In fact, it predicts its current growth rate is lower than its

114 Why? Historically, annual R&D inputs grew quickly at a rate of ~10%. Recently, they’ve grown slower,
at a rate of ~4%. As a result, cumulative R&D inputs have gradually been growing more slowly over time,
with their growth rate moving gradually down from 10% towards 4%, currently at ~6%. If annual R&D
inputs continue to grow at ~5% (as I’m forecasting before “wake up”), then the growth of cumulative R&D
inputs will continue to slow from 5% to 4%.

113 This chart puts Computing and Electronics at ~20% of global R&D spend, which would be 0.2*$2tr =
$400b.

https://www.icinsights.com/news/bulletins/Industry-RD-Spending-To-Rise-9-After-Hitting-Record-In-2021/
https://www.statista.com/statistics/270233/percentage-of-global-rundd-spending-by-industry/
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recent average (i.e. the averages reported in the table above) because the current growth of
cumulative inputs is lower than the recent average growth rate.

If I had used a smaller bucket of R&D, restricted to designing AI-specialised chips, this model
might have the opposite conclusion. Plausibly, the cumulative hardware inputs in this narrower
bucket will grow more quickly in the near future than the recent past. This is another way in
which the FLOP/$ forecast of this model could be considered to be conservative.

But aren’t we approaching the physical limits of the current paradigm?
It was beyond the scope of this report to do an investigation into the details of how long
progress could continue within the current hardware paradigm, and how promising new
paradigms are. Instead this report takes a zoomed out “outside view” approach to forecasting
hardware progress, extrapolating the observed relationship between inputs and outputs.

Would investigating the details of the current paradigm imply that this report overestimates
future hardware progress? Plausibly, but it’s not obvious to me.

● As mentioned above, the report assumes that hardware innovations are getting harder to
find, with more research effort required for each successive doubling of FLOP/$. This
captures the intuition that progress will become more difficult as we approach the end of
the current paradigm.

● In addition, the FTM assumes that the rate at which hardware innovations become
harder to find itself increases. The returns diminish increasingly steeply as we make
more hardware progress. Mathematically, this corresponds to reducing r as FLOP/$
increases. This is an additional conservative adjustment to naive trend extrapolation.

● It’s possible that the rate of progress will be faster in a new paradigm, rather than slower.

2020-FLOP per FLOP
The approach here is the same as in the last section. This time I use inputs to software R&D
rather than hardware, and measure output as 2020-FLOP per FLOP rather than FLOP/$.

In particular I:
1. Use historical data to calibrate an economic model relating cumulative inputs to output.

a. This time the data is significantly more uncertain, especially the output data.
b. Ultimately I assume that each doubling of software inputs drives ~1.25

doublings of 2020-FLOP per FLOP.
2. Forecast how quickly inputs will grow after “wake up”. I guess that these will grow at

~25%, slightly faster than their recent rate of 20%. This implies that 2020-FLOP per
FLOP will also grow at ~31%.115

115 1.25 * 25% = 31%.



41

Economic model relating software inputs to outputs
As last time, the core of the model can be expressed as:

For each x% increase in cumulative R&D inputs, the output metric will increase by r*x%.

Our inputs are real $ invested in software R&D; our output metric is 2020-FLOP per FLOP.

The data for software inputs and outputs is not comparably good as for hardware. On the input
side, the best I know of are the numbers from Tamay Besiroglu’s dissertation. He uses data on
the number of authors of papers in three subfields of ML as a proxy for the number of
researchers. After some adjustments, we end up with following estimates:116

ML subfield Growth in the annual inputs to software
R&D, 2012 - 2020

Computer vision 20%

Natural language processing 36%

Graphs 42%

My guess is that the real growth of inputs in this period is lower, mostly because these growth
rates seem very high and I think this estimate is very uncertain.117 (If these numbers are correct,
it suggests I’ve been too conservative with my estimates earlier in this section.)

On the output side, the ideal situation would be to have trustworthy estimates of how many
FLOP would be needed to train AGI at different points in time. This would be a direct estimate of
the growth in 2020-FLOP per FLOP.

In actual fact, the best I’m aware of is to track the training compute needed to achieve a fixed
score on a specific benchmark over time. The best example of this type of analysis that I know
for AI is AI and Efficiency, which finds that runtime compute needed for a fixed performance on
AlexNet halved every 16 months (growth rate of 52%) between 2012 and 2020.118

118 I discuss non-AI software trends here.

117 Uncertain for at least two reasons. Firstly, I don’t expect the “number of distinct authors” to correlate
perfectly with “number of full time researchers”. Secondly, the attempt to adjust for the quality of the
researchers seems unconvincing: they multiply by the salary of the researcher’s country but I’d expect
that within each country the new researchers are mostly young.
In addition to the numbers looking high and being uncertain, there’s another reason I think the true growth
is probably lower. The growth rate of cumulative inputs will be lower than the growth rate of annual inputs,
assuming that growth of annual inputs was slower before 2012. And it’s growth of cumulative inputs that
matters for this economic model linking R&D inputs to outputs.

116 Tamay multiplies (an estimate of) the number of paper authors from each country by the average
salary of scientists in that country, measured in nominal $. I adjust these numbers downwards somewhat
to account for inflation. So the R&D inputs in the table are measured in real $. See my calcs here.

https://static1.squarespace.com/static/5fb98ea9a787c521ab066091/t/5fba5c3ddb275d51d91825eb/1606048834827/AreModels.pdf
https://openai.com/blog/ai-and-efficiency/
https://docs.google.com/spreadsheets/d/1qmiomnNLpjcWSaeT54KC1PH1hfi_jUFIkWszxJGVU5w/edit#gid=0
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I believe that other benchmarks show similar or faster rates of software progress (with
doubling times of 1 - 2 years) when this has been measured.119

Estimating r for software
If we naively combine the g(2020-FLOP per FLOP) = 52% estimate from AI and Efficiency with
Tamay’s estimate of the growth rate of real $ inputs to computer vision, we get r = 52%/20% =
~2.5.

If we use this as our central estimate we are assuming that the software progress on ImageNet
will match that on AGI (in expectation). But in Bio Anchors, Ajeya writes:

“... researchers have strong feedback loops on ImageNet, and I would expect them to be
less efficient at reducing computation costs for something which has never been done
before, such as “training a transformative model.”

Another reason for the same adjustment is that we might imagine AGI software progress is the
average of all areas of AI, and that the areas where we’re measuring progress have faster
progress than the areas we’re not interested in measuring. On the other hand, some algorithmic
progress seems to reduce the compute needed large training runs more than the compute to
smaller training run, suggesting the compute needed to train AGI may be falling more quickly
than that for ImageNet.

Ultimately, I follow Bio Anchors and assume ~halve the rate of software progress as observed in
ImageNet.120 For now I will remain consistent with Bio Anchors and make an equivalent
adjustment. This halves my estimate to r = 1.25.

Using r = 2.5 would bring forward AGI timelines by ~3 years as well as making takeoff faster. In
the Monte Carlo I use large uncertainty bounds for this parameter: 0.8 - 5.

How quickly might software R&D inputs grow after “wake up”?
I don’t have much to add here to the analogous section for hardware. In that case, my central
estimate was 17%. I want to use a higher number here, for two reasons:

1. The AI software sector is growing from a smaller base. I guessed AI software spend is
~$10-20 billion, vs $70 billion for semiconductor R&D.

2. The AI software sector is apparently already growing faster than 17%: the numbers
above range from 20% to 42%. I expect that after “wake up” inputs to software will grow
as fast or faster as it is currently, based on the huge demand.

120 She replaces the observed 16 doubling time with a 2 - 3 year (i.e. ~30 month) doubling time.

119 For example, table 2 of OpenAI’s paper shows similar or faster software gains on other select tasks as
on ImageNet, and people I’ve spoken to suggest recent progress on language models has been faster
than the ImageNet progress.

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.x1lgibjdeh01
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=10
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a. I’m going to anchor to the 20%, rather than the 42%, because I used the 20% to
estimate r.121

Based on the above, my central estimate here is that real $ invested in software R&D will
grow at a rate of ~25%. For similar reasons to above, I’d be surprised if this is <15% or >40%.

This implies a central estimate of g(2020-FLOP per FLOP) = 1.25 * 25% = 31%. This is very
similar to the Bio Anchors extrapolation of ~28%; just a touch higher as I expect inputs to grow
somewhat faster than they are currently.

Summing up

122

This section analysed the effect of fast-rising AI investments on the speed crossing the effective
FLOP gap, summarised in the diagram above. This has implications for takeoff speeds and for
timelines.

The next section analyses the effect of incremental AI automation on speed crossing the
effective FLOP gap. In doing so, it introduces the theoretical machinery for calculating new
metrics for takeoff speed that relate to the number of AIs and their effects on GDP.

122 Link to diagram.

121 If I’d used the 42% to estimate r, I’d probably be using a lower value for r. (Though it’s possible that
software progress has simply been twice as fast in Graphs than in Computer Vision.)

https://docs.google.com/presentation/d/1nefLcXMoDqlvKF14cqdLXxy6qy5tX84-fRwCQuy03dA/edit#slide=id.g144b9cc1aa1_0_0
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5. AI automation
I think this section of the long summary summarises the important takeaways from
sections 5 and 6 in a just few pages. I’d only read this section if you really want to
understand the math behind the automation models I’m using further, but aren’t familiar
enough with growth economics already to read the mathematical description of the Full
Takeoff Model.

Summary
This section analyses the effect of incremental AI automation on takeoff speeds.

By “incremental” I just mean that I model AI automation as a continuous process of automating
more and more tasks, without any discrete “jumps” in which AI suddenly automates lots of
cognitive tasks in one fell swoop. I do not mean to imply that this process happens slowly; in
fact it may happen very quickly. The speed depends on the size of the effective FLOP gap and
how quickly we cross it.

As a recap, the two key inputs to takeoff speed are the effective FLOP gap (measured in
2020-FLOP) and our speed crossing the effective FLOP gap, g(2020-FLOP). Section 3
described this framework and laid out evidence informing the effective FLOP gap, and section 4
analysed the effect of rising AI investment on g(2020-FLOP).

This section analyses the effect of AI automation on g(2020-FLOP). As in section 4, I’ll analyse
each of the three components of 2020-FLOP separately. This time I’ll take them in reverse
order: 2020-FLOP per FLOP, then FLOP/$, and finally $ on FLOP.

For each component, I will use a certain economic model to analyse the effect of AI
automation.123 In this section I use a simple version of the model which excludes certain
bottlenecks.124 Bottlenecks are discussed in section 6.

Then I’ll explain how we can calculate some additional metrics of takeoff speeds using our
model of AI automation. In particular, metrics relating to the number of AIs and their effects on
GDP.

The key takeaways from all this are:
● AI automation causes growth of the three components to accelerate continuously. By the

time we reach full automation of cognitive labour (AGI), they can double in months or
faster.

○ This includes a feedback loop where more 2020-FLOP leads to training better
AIs and running more AIs, which in turn allows us to produce more 2020-FLOP.

124 This is the Cobb Douglas version of the task-based model.
123 I’ll use a task-based model, and explain it below.

https://docs.google.com/document/d/1Z7HJ9pHctgDi1XYbgRW9-7J1bxTL98KW1qb7HN7Mv-A/edit#heading=h.io269vaujkvz
https://takeoffspeeds.com/description.html
https://takeoffspeeds.com/description.html
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● Initially, when a small fraction of cognitive tasks have been automated, AI automation
has a small effect on the growth of the three components compared to the rising
investment discussed in section 4.

○ The effect on FLOP/$ and software becomes significant, relative to rising human
investment, when ~25% of cognitive tasks have been automated.

○ The effect on $ on FLOP becomes significant when ~45% of cognitive tasks have
been automated.

○ This doesn’t account for bottlenecks, which would increase these percentages
somewhat.

● Unfortunately, I’m not aware of a simple, analytically tractable way to calculate ovaerll
takeoff speed metrics given the feedback loops involved here. My approach instead is to
simulate the model and do a sensitivity analysis, which I’ll present in section 7.

This section is more technical than other sections. Many readers will prefer to skip to the next
section.

2020-FLOP per FLOP
2020-FLOP per FLOP increases because of software research. I’m going to model incremental
AI automation as a continuous transition from “world 1”, where humans do ~all the software
R&D, to “world 2”, where AIs do ~all the software R&D. First I’ll discuss the dynamics of world 1;
then those of world 2. Lastly I’ll explain how I’m modelling the transition between the two.

World 1
We’re currently in a world where software research is overwhelmingly done by human workers.
Let’s call this world 1. In section 4, I forecasted how quickly these human inputs to software
R&D might grow after “wake up”, and what effect this might have on 2020-FLOP per FLOP.125

125 I guessed that each doubling of cumulative software R&D inputs would cause 2020-FLOP per FLOP to
double 1.25 times. I measured in the inputs as real $ spent on R&D.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.w93f9oz4dz91
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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World 2
Once we have billions of AGIs – remembering that AGI is AI that can automate 100% of
cognitive tasks – we’ll be in a world where software research is overwhelmingly done by AIs.
Let’s call this world 2.

Ultimately, we’ll model the transition from world 1 to world 2 by assuming progress is driven by a
combination of AI and humans.
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Before this, let’s think about what will happen to the level of software world 2?

We can understand this dynamic by answering two questions:
1. How long does the first doubling of software (i.e. 2020-FLOP per FLOP) take in world 2?
2. How do the lengths of the software doublings change over time in world 2?

How long is the first software doubling?
The answer to the first question depends on i) how many human researcher-years are needed
to double software when we first get AGI, and ii) how many AGIs you can run (where each AGI
is as productive as a human per day).126

Here’s a very rough estimate of (i). If there are 20,000 high-quality human researchers on
software today127 and software doubles every ~2 years128 then it currently takes 40,000
researcher years to double 2020-FLOP per FLOP. Let’s assume this is ~100X higher by the time
we get AGI due to diminishing returns from the research that happens before then.129 That
implies ~4 million researcher-years to double software when we get AGI.

129 100X corresponds to cumulative research inputs growing by 100X by the time we develop AGI, which
could be from growing 23% per year for 20 years before we develop AGI. e^(0.23*20) = 100. I’m using a
model in which the effort needed to double software is proportional to the total cumulative input so far.

128 In the ImageNet example, 2020-FLOP per FLOP doubled every 16 months.

127 DeepMind has 1000 employees, and I earlier assumed that total AI software input was 20X that of
DeepMind. (The 20X is a guess, and someone could probably easily get a better number.) Facts that are
potentially relevant to a more careful estimate: 200 new AI PhDs in 2020; 80,000 AI journal publications in
2020.

126 A more precise formulation of (ii) is: how many human workers you’d need to make the same software
progress per day as the collection of AIs you can run. This formulation reflects the fact that there may be
a variety of different AIs doing different software tasks, rather than just AGIs doing all of them. (Indeed,
this is what happens in the Full Takeoff Model!)

https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-4.pdf
https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-1.pdf
https://aiindex.stanford.edu/wp-content/uploads/2021/03/2021-AI-Index-Report-_Chapter-1.pdf
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To estimate (ii), suppose you trained AGI with 1e32 2020-FLOP, the training run took 4 months,
afterwards you used 10% of your training compute to run AGIs doing software research, and
running an AGI required 1e16 2020-FLOP/s.130 With these conservative assumptions,131 you’ll
have 100 million AGIs doing software research and so the first software doubling will take ~1
months.

Our estimate here could easily have been more aggressive:
● If instead AGI requires 1e36 2020-FLOP to train but has the same runtime requirements

(e.g. due to a long horizons), the first software doubling will be OOMs quicker as we’ll
have more 2020-FLOP to run AGIs.

● If AGI has significant “one-off” productivity advantages over humans for R&D (run faster
in serial time, no sleep or leisure, better motivation and coordination, all AGIs are copies
of the most productive AGI) then this will speed up software progress. My current
guesstimate of these advantages for R&D is ~60X.

A more aggressive estimate by 10X would naively implies software doubling in a couple of
weeks, though at that point bottlenecks from computational experiments become salient.

The point here is not to trust these exact numbers.132 It is to see the way in which the time for
the first software doubling depends on the AGI’s training compute, AGI’s runtime compute, and
the amount of software research that has happened before AGI. It is secondly to make plausible
the idea that the initial software doubling in world 2 could happen in months or much less.

How do the lengths of the software doublings change over time?
In world 2, the annual inputs to software R&D are proportional to the 2020-FLOP used for this
purpose.133 This means that there is a very direct feedback loop between the inputs and outputs
of software research, unlike today. Doubling the software R&D output metric also doubles the
input to software research.

133 We can in principle distinguish between 2020-FLOP for training AGI (my main focus thus far in the
report) and the 2020-FLOP for running AGI. It is possible that they grow at different rates, e.g. if a new
algorithm reduces training FLOP but not runtime FLOP. For our present purposes, it is the runtime
2020-FLOP that concerns us. For ease of exposition, I won’t explicitly distinguish between these two
unless it is relevant. [Describe what Full Takeoff Model does here. TODO]

132 In fact, the first doubling time depends on many interacting factors (like “how much will returns to
software research have diminished by the time we get to AGI?”) and is hard to estimate analytically.
Ultimately, I get around this by simulating the system and doing a sensitivity; software doubling times are
almost always extremely fast (<6 months) by the time we have AGI, even if there isn’t a “software
singularity” (discussed below). But the simulation omits bottlenecks from computational experiments.

131 Small training 2020-FLOP for AGI; a large runtime compute for AGI; only 10% of compute on software
work; ignores the fact that inference is more efficient than training; ignores the possibility of AIs perform
some tasks much more compute efficiently than human brains (e.g. like calculators are OOMs more
compute efficient than human brains at arithmetic, or facial recognition systems are OOMs more efficient
at recognising faces, or GPT-3 is OOMs more compute efficient at writing poems).

130 I.e. 1e16 2020-FLOP are needed to do as much quality-adjusted cognitive labour as a human does in
1 second.

https://docs.google.com/spreadsheets/d/1_8NgvrbGYYr8rw4ZxmEGF9G170crqMxaColHS1ner2g/edit#gid=0
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
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The feedback loop is:

Better software → more 2020-FLOP → more software R&D → better software

It turns out that, with this feedback loop, there are two broad possibilities.

1. Software singularity - quicker and quicker doublings. If returns to software R&D exceed a
certain threshold, the feedback loop is so powerful that there’s a “software only singularity”. The
level of software, quantified here as 2020-FLOP per FLOP, grows faster and faster, theoretically
going to infinity in finite time. And this happens even using a fixed quantity of physical FLOP to
run the AIs. In practice, of course, the software returns become worse before we go to infinity
and we move to the second possibility.

2. Software fizzle - slower and slower doublings. If returns to software R&D are below a
certain threshold, the level of software grows more and more slowly over time,134 assuming a
fixed quantity of physical FLOP. (If the amount of physical FLOP is in fact growing increasingly
quickly, then the level of software can do the same. But software progress is reliant on the
growth of physical FLOP.)

Which possibility will obtain? It turns out that there is a software singularity just if r > 1, where r
is defined as in section 4:

For each doubling of cumulative R&D inputs, the output metric will double r times.

134 There is technically a “knife edge” third possibility where software grows at a constant exponential rate,
if software returns are exactly equal to the threshold. I’m setting this aside because it’s a knife edge
result.
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r > 1 means that doubling cumulative software inputs causes 2020-FLOP per FLOP to more
than double.135 I discuss whether this is likely to happen here, considering estimates of r and the
fact that r will diminish over time.

What are the implications of a software singularity for takeoff? In short, it would not guarantee a
fast takeoff in every important metric, but it would make takeoff faster.

● Make takeoff faster. A software singularity would lead to very fast software progress as
we approach AGI, significantly accelerating software growth. This means we cross the
effective FLOP gap more quickly and AI capabilities improve more quickly immediately
after AGI. This progress in AI capabilities wouldn’t be bottlenecked by the need to print
new chips.

● Increase the peak capabilities reached shortly after AGI. If there’s a software
singularity, AI software could rapidly grow by many OOMs and approach physical limits
in the months after AGI, without needing to wait on the design and production of new AI
chips. This has implications for how a small calendar lead in developing AGI could
translate into a total capabilities advantage shortly after developing AGI.

● No guarantee of fast takeoff. During a software singularity, each doubling of software
need only happen slightly faster than the previous doubling. In fact, only under extreme
assumptions does each doubling happen twice as quickly as the last.136 This means that
on a metric of takeoff speed in terms of the ratio between successive software doubling
times, world 2 does not involve a fast takeoff even if there’s a software singularity. That
said, a fairly rapid transition from world 1 to world 2 would be more likely to drive a fast
takeoff if there’s a software singularity.

I’ve just discussed the internal dynamics of 2020-FLOP per FLOP in world 2 in their implications
for takeoff speed; I analysed the dynamics of world 1 in section 4; now I describe a model of a
gradual transition from world 1 to world 2.

136 I analyse this dynamic more in appendix TODO.

135 Why is this the condition for software singularity? Suppose that you initially have 1000 AGIs doing
software work. Let’s say it takes them 1 year to double cumulative software inputs. By this time,
2020-FLOP per FLOP has increased by a factor of 2^r. (This follows straight from the definition of r.) If r >
1 then 2020-FLOP per FLOP has more than doubled, and so your software research input has more than
doubled to >2000 AGIs. How long will it take you to double cumulative inputs a second time? If your
population of AGIs were still 1000, it would take you twice as long (each doubling of cumulative inputs
takes twice as much effort as the previous doubling). But because you now have >2000 AGIs, it will take
you less long and you’ll double cumulative inputs in less than a year. This means the growth rate of
cumulative inputs is increasing. g(output) = r * g(cumulative inputs), so the growth rate of output is also
increasing.

How does introducing a “stepping on toes” assumption change this analysis? Not much. Stepping on toes
is expressed mathematically as I = C^lambda, lambda < 1. In this case, the condition for software
singularity becomes r*lambda > 1. If we held our estimate of r fixed, then a software singularity would be
less likely. However, consistency with the historical data requires us to raise our estimate of r to exactly
compensate if we lower the value of lambda. This is because the historical data constrain r*lambda
directly. For example, in section 4 I said the data suggested r = 2.5. But if I’d accounted for stepping on
toes, I’d have instead said that the data suggests r*lambda = 2.5. The implication of the historical data for
the software singularity is unchanged. In both cases the singularity happens just if the quantity > 1, and
the historical data suggest the quantity equals 2.5.
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Transition from world 1 to world 2
We can represent the annual inputs to software research mathematically in worlds 1 and 2.

In world 1, the annual inputs to software research are given by:
(1)𝐼

𝑆
 =  𝐿

𝑆

where LS is the number of human software workers.137 138

In world 2, the annual inputs to software research are given by:
(2)𝐼

𝑆
 =  𝐶

𝑆

where CS is the quantity of 2020-FLOP used by AI systems for software R&D. (We will continue
to use the same economic model to predict how the annual inputs will affect the output metric,𝐼

𝑆
 

2020-FLOP per FLOP.)

How can we model the move from world 1 to world 2? The best approach I know of here is the
task based model.139 This model supposes that software R&D involves a large number of
distinct cognitive tasks.140 Total R&D input depends on the inputs to each task.141

141 This mathematical footnote is not needed to understand what follows. This section uses the Cobb
Douglas version of the task-based model, which is simple and doesn’t include bottlenecks. In that model,

140 In the model these tasks are fixed over time. However, in the version that incorporates bottlenecks
(that I’ll introduce next section), the relative importance of these tasks does change over time. In
particular, if we automate a task our output on that task increases and so the task becomes less
important. The result is that the non-automated tasks grow in importance. This matches the recent trend
of hard-to-automate sectors like education and healthcare growing as a fraction of GDP while
automatable sectors like agriculture fall as a share of GDP. Also, the growing importance of
non-automated tasks can represent the possibility that entirely new tasks are introduced that AI cannot
(initially) perform. In our model, we’ll think of these new tasks as new applications of existing tasks that AI
couldn’t perform.

139 During my previous investigation into whether AI could drive explosive growth I didn’t come across
anything more promising despite studying most mainstream growth models and most growth models of
transformative AI (e.g. this review). This model also seems to be favoured by economists studying the
economic implications of advanced AI, e.g. Aghion et al. (2017) and Hanson (2001). Some advantages of
this model are: quantifying what % of the way from world 1 to world 2 we’ve travelled at each point in time
and quantifying the effect of this on software R&D, allowing flexible incorporation of the degree of
bottlenecking between different tasks (which I’ll use in section 6); being fairly intuitive to explain. With
bottlenecks, the model looks like (see section 9.2) it can explain a good chunk of the growth of the last
150 years as resulting from automation. Thus we are using a model in which future AI automation is a
continuation (and significant acceleration) of past automation (which for the first time ever leads to full
automation).

138 If we want to account for the “stepping on toes” effect we could instead write I = L^lambda. I won’t do
this for simplicity of exposition, but will note in footnotes or appendices when the stepping on toes effect
would meaningfully change the dynamics.

137 This is slightly different from section 4 where I measured software inputs in units of real $. In this
section it will be simpler to talk in terms of # researchers, rather than real $. We can relate these two input
metrics by estimating the annual rise in real salaries during this period, which I'll assume is 2%. Real $
inputs should grow 2% quicker than # researchers. For example, I estimated that real $ inputs to software
would grow at 25%, and this would correspond to 23% growth in # researchers.

https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth
https://docs.google.com/document/d/1XCn4Pk44evZEjbmPD-zKlj26Z_bhf0ABeWVID_4L5sg/edit#
https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf
https://mason.gmu.edu/~rhanson/aigrow.pdf
https://web.stanford.edu/~chadj/AJJ-AIandGrowth.pdf


52

In world 1 humans do ~all the tasks142 and, when you do the maths of the task based model, this
results in equation (1). In world 2 AIs do all the tasks and this results in equation (2). We model
intermediate worlds as ones where AI performs a fraction f of tasks, 0 < f < 1.143 It turns out that,
in the Cobb Douglas version of the task-based model (that excludes certain bottlenecks)144, total
R&D input is given (up to an unimportant constant) by:

(3)𝐼
𝑆
 =  𝐿

𝑆
(1−𝑓) * 𝐶

𝑆
𝑓

Notice that when f = 0 this becomes equation (1) and when f = 1 it becomes equation (2). As we
continuously automate a greater fraction of tasks, the exponent on C increases gradually from 0
to 1.

How should we model the process by which tasks are incrementally automated? There are two
components here:

1. When will we develop AI that can perform various cognitive tasks?
2. When do you have enough runtime compute to actually automate various tasks?

When will we develop AI that can perform various cognitive tasks?
My proposal is to extend the Bio Anchors model for when we train AGI. Let’s say that we use
Bio Anchors to predict that we’ll need 1e36 2020-FLOP to train AI that can automate 100% of

144 This section analyses the implications of the Cobb Douglas version of the task-based model because it
is (relatively) simple to understand and tractable to analyse analytically. The Cobb Douglas version
excludes certain bottlenecks, some of which are included in the CES version of the task-based model. I’ll
flag when results from the Cobb Douglas version might not carry over to the CES version. I discuss the
CES version, and bottlenecks more broadly, in section 6.

143 The model implies that an equal fraction of output is paid to each task in 2021. This means that the
‘fraction of tasks’ in the model matches my earlier definition of the “% of cognitive tasks”, where I
weighted each task by the salary-weighted time spent on it in 2021. (I am assuming that all tasks
performed by software workers are cognitive – as opposed to partly-physical tasks like “building a table” –
and so can all ultimately be performed by AI.)

142 Is it really true that human workers do all the tasks necessary for software development today?
Perhaps conducting AI experiments is a crucial part of the process, and this “task” is already performed
by computers. I discuss this in appendix TODO.
In the Full Takeoff Model, I actually assume that, even if AI experiments are not part of software
development, initially a small percentage of software tasks are performed by 2020-FLOP. I am thinking
here of the way in which software developers offload certain cognitive tasks to calculators and
spreadsheets. These are only a small fraction of the relevant tasks because only a small fraction of the
money invested in software development goes to buying the machines that do these types of tasks. (E.g.
calculators are very cheap and use of google sheets are very cheap compared to a developer’s salary.)
The assumption that a small percentage of software tasks, rather than 0 tasks, are initially performed by
2020-FLOP does not materially affect the results.

the total R&D input depends on the input to each task as follows. You multiple the inputs of every task
together to get the total R&D input. Mathematically, suppose there are N tasks, and input to each task is
given by X1, X2,..., XN. Then total R&D input I = X1 * X2 *... * XN. The implication is that you want to spread
your inputs evenly across the tasks, as a tiny input on any task could really let you down (and zero input
on any task will mean zero total input).
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cognitive tasks (my definition of AGI). We can extend it to estimate the 2020-FLOP needed to
train AI that can perform x% of cognitive tasks, for various values of x.145 For example, we
might assume that you automate 50% tasks with 1e34 2020-FLOP and automate 20% of tasks
with 1e31 2020-FLOP.

What evidence can we use to inform these assumptions?
● Bio Anchors, or perhaps other methods, can inform how much 2020-FLOP we think is

needed to train AI that can perform 100% of tasks.
● My earlier discussion of the effective FLOP gap can then inform how much 2020-FLOP

we think is needed to train AI that can perform 20% of tasks.
● The Full Takeoff Model (FTM) then uses a pretty hacky method to extrapolate to the

training run needed to automate x% of tasks for any x.

The spread of these tasks in 2020-FLOP space, together with g(2020-FLOP), will dictate how
quickly new tasks are automated. It is a hugely important and uncertain input to this framework,
which strongly influences how suddenly we transition from world 1 where human workers are
the key input to economic production to world 2 where AI is the key input.

When do you have enough runtime compute to actually automate various tasks?
As discussed in section 2, having AI that can perform a task is not sufficient to fully automate it.
In addition, you must have enough runtime compute to actually replace the human workers that
currently do the task.146 147

To know whether we have enough runtime compute to fully automate a task, we need to know:
1. How many human workers are currently performing that task?
2. How much compute are we using to run AIs doing software R&D?
3. What are the runtime compute requirements for AIs to have the same output at the task

as a human worker?
4. What one-off productivity gains do AIs have over humans?

Our Full Takeoff Model (FTM) makes assumptions about these quantities. The important high
level points are that:148

148 Some additional details are included in this appendix.

147 Of course, even this is not sufficient. You might have AI that can readily perform a task, and enough
compute to affordably automate all instances of that task, but not actually automate it due to some other
bottleneck like regulations, incumbents resisting automation, or just the minor effort involved in
introducing the AI into the workflow. The Full Takeoff Model does not incorporate delays between getting
enough training and runtime compute to fully automate a task and actually fully automating it; I discuss
this weakness in section 10[TODO link]. (This is why the training compute threshold should be interpreted
as the 2020-FLOP training requirement for AI to be able to “readily perform” x% of cognitive tasks.

146 Indeed, you must be able to run enough AIs doing the task that it becomes more profitable for human
workers to perform a different task instead.

145 In fact, to fully specify the model we’ll need to determine the 2020-FLOP needed for every value of x
between 0 and 100, though the results are not sensitive to small variations.

https://www.lesswrong.com/posts/k2SNji3jXaLGhBeYP/extrapolating-gpt-n-performance#Comparisons_and_limits
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1. FTM assumes 1.6 million people149 doing software R&D in 2022, which grows at 20%
before “wake up” and 25% after “wake up”. Also workers’ time is split evenly over equally
important non-automated tasks (so if there are 5 equally important non-automated tasks,
workers spend 20% of their total time on each).

2. FTM tracks total global compute and, after “wake up”, the fraction of this used to run AIs
doing software R&D rises very rapidly to ~10%. Why so high? After “wake up”, demand
for AI software R&D will be high, and so a notable fraction of AIs will be assigned to it if
they can be useful.

3. FTM assumes that the runtime requirements for different tasks are spread out over
multiple OOMs, just as the training requirements.

a. My central estimate has AGI at 1e17 2020-FLOP/s and 20% of tasks at 1e15
2020-FLOP/s.

b. The spread of runtime requirements is smaller than the spread of training
requirements for two reasons.

i. A 10X increase in runtime compute typically corresponds to a 100X
increase in training, e.g. for Chinchilla scaling.

ii. Increasing the horizon length of training tasks will increase training
compute but not runtime.

4. The FTM assumes ~60X one-time gains for AGIs over humans doing R&D.

The software sector is relatively small and so lack of runtime FLOP only prevents task
automation if AI training requirements are extremely low.

To summarise the above two subsections, a task is fully automated when we i) have done a big
enough training run to develop AI that can perform the task, and ii) we have enough runtime
compute for AIs to replace all humans at that task. I believe this is a natural way to integrate Bio
Anchors with a task-based model of incremental automation.

Section 7 considers a model in which having more runtime compute than you need to automate
a task can compensate for not having enough training compute. The consequence is that
software R&D can be fully automated much earlier due to an abundance of runtime FLOP.

This simplistic model obviously omits many factors that in practice affect the automation of
tasks; I’ll discuss this in section 8.

The dynamics during the transition from world 1 to world 2
During the transition, there is the following two qualitative feedback loops:

149 In fact, the true number of people doing AI software R&D is lower by 1-2 OOMs. My methodology was
to multiply world population by an estimate the fraction of GWP spent on software R&D (0.02%); but in
fact these workers’ salaries are much higher than average and per-person capital costs for this industry
are also unusually high. It doesn’t matter much to the results as the bottleneck to automation is nearly
always training compute rather than runtime compute.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.xrfouzges0mp
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.io2mfsn29u71
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(A) Better software150 → more 2020-FLOP in largest training run → more tasks automated
→ more input to software R&D → better software

(B) Better software → more 2020-FLOP for running AIs → more AIs per automated task →
more input to software R&D → better software

Both loops increase inputs to software R&D; I’ve highlighted the differences in bold.

151

Qualitatively, the result of this feedback loop is that software R&D inputs and 2020-FLOP grow
at increasingly fast rates – super exponential growth – as software tasks are automated.152

When does this super exponential growth become quantitatively significant?

In section 4 I guessed that the growth rate of real $ inputs to software R&D would be 25% after
“wake up”. We can ask: What fraction of tasks must be automated before the effect of AI
on software inputs is larger than this?

152 Equation (3) implies the growth rate of software inputs is given by g(I) = (1-f)*g(L) + f*g(C). We know
that g(C) > g(L): 2020-FLOP grows much quicker than human inputs to software R&D. So as f increases,
g(I) increases. If the growth rate of software inputs increases, so does the growth rate of software output:
2020-FLOP per FLOP. (This follows from the SEG). And if g(2020-FLOP per FLOP) increases then so
does g(2020-FLOP), as long as g(physical FLOP) is not falling (in fact it will be rising). This establishes
that both g(I) and g(2020-FLOP) increase as f increases. In short: f increases → g(I) increases →
g(2020-FLOP per FLOP) increases → g(2020-FLOP) increases. This argument could fail for two reasons.
Firstly, in the CES version the importance of tasks done by AI falls over time and so we must automate
tasks quickly enough to counteract this for the argument to go through. Secondly, if g(C) falls for some
other reason (e.g. we stop ramping up the fraction of compute used for software R&D) then g(I) may fall
and the argument is blocked.

151 Link to chart.
150 I use this interchangeably with “more 2020-FLOP per FLOP”.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=1CzCOGE4pwcR#
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Equation (3) implies that the growth rate of software inputs due to AI equals f * g(2020-FLOP). If
g(2020-FLOP) = 100%153, then this first exceeds 25% when f = 0.25. In other words, it is when
roughly ~25% of cognitive tasks have been automated that rising AI inputs become more
important to software R&D than rising human inputs. I’ll revisit this question in section 6 when
we discuss bottlenecks, which will push towards a somewhat larger fraction.154

Summing up
Incremental AI automation will increase g(2020-FLOP per FLOP) as we cross the effective
FLOP gap. This effect is smaller than the effect of rising human inputs until AI has automated
~25% of cognitive tasks. By the time we reach AGI, 2020-FLOP per FLOP will be doubling in
months or much less.

More generally, as we cross the effective FLOP gap, g(2020-FLOP per FLOP) depends on:
1. The returns to software R&D, quantified by the parameter r.
2. The rate at which inputs to software R&D grow. There are two sources of growth:

a. Increasing number of people doing software R&D.
b. Increasing fraction of tasks done by AI, and an increasing number of AIs doing

each task.

This completes my discussion of the effect of incremental AI automation on 2020-FLOP per
FLOP. The next section discusses the effect on FLOP/$.

FLOP/$
In section 4 I analysed how fast-rising AI investment might affect FLOP/$ after “wake up”. I
guessed that inputs to hardware R&D might grow at 17%, eventually driving FLOP/$ to grow at
~88%.

This section extends that analysis by additionally considering the effect of incremental AI
automation on FLOP/$. Like with software, we’ll see that g(FLOP/$) increases as more tasks
are automated such that FLOP/$ may be doubling in months or quicker by the time we have
AGI.

The analysis is very similar as for software, so I start by noting the points of similarity and
difference.

154 In fact, this analysis involved a few simplifications. Firstly, the bottleneck dynamic introduced in the
next section will reduce the effect of AI automating 20% of tasks. Secondly, the effect of rising human
inputs becomes less important as AI automates more tasks, which pushes in the other direction. Overall, I
think the answer “f = 0.2” given here is too low, a more realistic answer is maybe f = ~0.35. [Maybe Jaime
can investigate the relative contributions from AI automation vs rising human inputs for rho = -0.5?]

153 A ballpark figure from section 4.
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Comparing the effect of AI automation on hardware vs software R&D
The effects of AI automation on g(FLOP/$) is similar to its effects on g(2020-FLOP per FLOP).
Here are the key similarities in my analysis of each:

● We start in world 1, with humans doing 100% of the cognitive tasks needed for hardware
R&D.

● We end up in world 2, where AIs do 100% of those cognitive tasks.
● There’s a transition from world 1 to world 2 where the fraction of cognitive tasks done by

AIs increases continuously from 0% to 100%. g(FLOP/$) increases significantly during
this transition.

○ During the transition, a task is automated when i) we’ve done a big enough
training run that the resultant AI can perform the task, and ii) we have enough
runtime compute to replace all humans doing that task.155 156

There are a few important changes:
● Delays before innovation can boost AI capabilities.

○ Software improvements can be rolled out immediately over all existing compute,
increasing AI inputs to software R&D without delay. By contrast, there are
significant lags between designing new chips and using the new chips to run AIs.
At the least you need to manufacture new chips from an existing fab; you may
also need to build new manufacturing equipment (e.g. for making chips of a new
node size).

○ The FTM models the need to manufacture new chips, tracking both the stock of
chips and the new chips produced each year. It also includes an optional lag
between designing new chips and beginning to manufacture them. More.

● Physical capital is needed for hardware R&D. Hardware R&D sometimes requires
experiments to test the behaviour of materials and new chip designs. To incorporate this,
a fixed fraction of tasks are performed by capital; the rest are cognitive tasks.157 Myα
best guess is .158α = 0. 3

○ The three equations from last section become:

(1*) - humans do all cognitive tasks, world 1𝐼
𝐻

 = 𝐾
𝐻

α 𝐿
𝐻

(1−α)

158 Alpha gives the fraction of R&D costs paid to physical capital (as opposed to cognitive labour) in 2021.
This data suggests labour share is 65% and maybe as high as 90%, depending on whether you label
certain subcategories are spent on labour vs capital. However, the data is for generic R&D rather than
hardware R&D. It is also not possible to tell

157 So this simplistic model assumes that all R&D tasks performed by labour are cognitive tasks, not
requiring physical actuators. For labour tasks that aren’t cognitive, it is probably best within this framework
to include them as tasks done by physical capital. More.

156 The hardware R&D sector employs a relatively small number of people (though more than AI software)
and so lack of runtime FLOP only prevents task automation if AI training requirements are low (e.g. AGI
trained with <1e31 FLOP [TODO confirm]).

155 FTM assumes 16 million people doing hardware R&D in 2022, which grows at 7% before “wake up”
and 17% after “wake up”; people are split evenly over non-automated tasks. (16 million is too high by 1-2
OOMs; the reason is that we multiply world population by an estimate the fraction of GWP spent on
software R&D (0.02%). It doesn’t matter much because the bottleneck to task automation is nearly always
training compute rather than runtime compute.

https://docs.google.com/spreadsheets/d/13MM1zrcNaGwJ1sgLlrpv0fTddub_cJS0t4yknKZw-9E/edit#gid=0
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(2*) - AI does all cognitive tasks, world 2𝐼
𝐻

 =  𝐾
𝐻

α 𝐶
𝐻

(1−α)

(3*) - AI does fraction f of cognitive tasks𝐼
𝐻

 =  𝐾
𝐻

α 𝐿
𝐻

(1−α)(1−𝑓)𝐶
𝐻

(1−α)𝑓

where , and gives the amount of physical capital, labour and𝐾
𝐻

𝐿
𝐻

 𝐶
𝐻

 

2020-FLOP used in hardware R&D; and gives the resultant real input to𝐼
𝐻

 

hardware R&D.

Having made this comparison with hardware vs software, I’ll briefly describe the dynamics
affecting g(FLOP/$) in world 2 and in the transition from world 1 to world 2.

World 2
As with software, we consider two questions.

1. How long does the first doubling of hardware (FLOP/$) take in world 2?
2. How do the lengths of the software doublings change over time in world 2?

How long does the first doubling of hardware (FLOP/$) take?
The considerations influencing this are similar as for software. We forecast how many
researcher-years will be needed to double hardware, and compare this to how many AGIs we’ll
be able to run. If we’ll need 1 million researcher-years but we’ll have 2 million AGIs, the first
doubling takes 6 months. The ballpark estimate here goes the same as for software, with the
result that the first doubling could happen in months or less.

One additional complication here is that hardware R&D progress might be bottlenecked by
limited physical capital. This could cause the first doubling to happen much more slowly.

How do the lengths of the software doublings change over time
As with software, we can distinguish two scenario:
1. Hardware singularity - quicker and quicker doublings. If returns to hardware R&D exceed
a certain threshold, the feedback loop is so powerful that there’s a “hardware only singularity”.
The level of FLOP/$ grows faster and faster, theoretically going to infinity in finite time. This
dynamic is initially curtailed by the difficulty of printing new chip designs fast enough to quickly
match the current stock of hardware.

2. Hardware fizzle - slower and slower doublings. If returns to hardware R&D are below a
certain threshold, FLOP/$ grows more and more slowly over time,159 assuming a fixed $ spend
on FLOP.

159 There is technically a “knife edge” third possibility where software grows at a constant exponential rate,
if software returns are exactly equal to the threshold. I’m setting this aside because it’s a knife edge
result.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.o7tmwweugbb
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.o7tmwweugbb
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Which scenario will obtain? The condition for hardware singularity is r > 1. My(1 − α)
best-guess values of =30% and r = ~5 imply it would happen comfortably. Though of course rα
will be lower by the time we reach AGI. The question is less important than for software because
any hardware singularity would be slowed by delays printing chips, as mentioned above.160

Transition from world 1 to world 2
Just like last time, there are two feedback loops at play during this transition:

(A*) Better hardware161 → more 2020-FLOP in largest training run → more tasks automated
→ more input to hardware R&D → better hardware

(B*) Better hardware → more 2020-FLOP for running AIs → more AIs per automated task →
more input to hardware R&D → better hardware

We can show these feedback loops alongside those for software:

161 I use this interchangeably with “more FLOP/$”.

160 Even if the conditions for software singularity don’t obtain and the conditions for hardware singularity
don’t obtain, there can still be a joint hardware-and-software singularity if the combined returns are high
enough. And even if this doesn't obtain, I expect both FLOP/$ and software to eventually grow
increasingly quickly due to GWP growth accelerating (which I discuss later).
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162

It’s worth emphasising that the fast growth of 2020-FLOP is playing a dual role: bigger training
runs which lead to greater automation and more runtime compute to run AIs doing tasks that
have been automated.

AI automation becomes the dominant source of R&D input growth at about the same time as for
software. In section 4 I guessed that human inputs to hardware R&D would rise at 17%.
Equation (3*) implies that the growth rate of software inputs due to AI is given by the expression

* f * g(2020-FLOP). (Recall f is the fraction of cognitive tasks automated by AI.)  If(1 − α)
g(2020-FLOP) = 100% (from section 4), then this first exceeds 17% when f = 0.25.163

163 100%*0.7*0.25 = 17.5%. Notice that f = 0.25 is the same as the result for software R&D. There are in
fact two differences between software and hardware here, which happen to roughly cancel out. First, I
projected slower growth of human investments in hardware R&D than in software R&D. Second, I model
physical capital (which AI can’t replace) as having an important role in hardware R&D but not in software
R&D.

162 Link to diagram. There are of course human inputs to hardware and software R&D, but these aren’t
represented explicitly in the diagram.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=1CzCOGE4pwcR#
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Summing up
Incremental AI automation will increase g(FLOP/$) as we cross the effective FLOP gap. This
effect is smaller than the effect of rising human inputs until AI has automated ~25% of cognitive
tasks (though the bottlenecks considered in the next section will increase this % somewhat).

More generally, as we cross the effective FLOP gap, g(FLOP/$) depends on:
1. The returns to hardware R&D, quantified by the parameter r.
2. The rate at which inputs to hardware R&D grow. There are two sources of growth:

a. Increasing number of people and physical capital used in hardware R&D.
b. Increasing fraction of cognitive tasks done by AI, and an increasing number of

AIs doing each task.

This completes my discussion of the effect of incremental AI automation on FLOP/$. The next
section discusses the effect on $ on FLOP.

$ on FLOP
In section 4 I analysed the impact of rising AI investments on $ on FLOP. I guessed that, after
“wake up”, $ on FLOP would initially grow at a rate of ~97% as we ramp up the fraction of global
FLOP used on the largest training run, and then at ~22% after this when we’re just expanding
global chip production.

This section extends this analysis by incorporating the impact of incremental AI automation on $
on FLOP.

My approach here is to:
1. Use the same task-based model to forecast the effect of AI automation on Gross World

Product (GWP) as I previously used to forecast its effect on software R&D and hardware
R&D.

a. This will tell us GWP in each year as we cross the effective FLOP gap and AI
automates more and more cognitive tasks.

2. Assume that any acceleration in GWP growth accelerates growth in all economic sectors
to the same degree. In particular, the increase in g($ on FLOP globally) equals the
increase in g(GWP).

a. For example, suppose AI automation causes GWP growth to be 5% in some year
rather than 3% - an additional 2% growth. Then I’ll assume that g($ on FLOP
globally) is 2% larger than I was previously assuming: 24% rather than 22%.

b. This is a conservative assumption. AI automation of the economy will probably be
disproportionately directed towards manufacturing more chips (more fabs, more
chips per fab), given the large demand for FLOP that will exist.

i. Importantly, the FTM does assume that AI automation will be
disproportionately focussed on software and hardware R&D. Only on this

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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third component, $ on FLOP, am I making this conservative
assumption.164

c. For more detail see this appendix.

I’ll now say a bit more about #1, the effect of AI automation on GDP.

How I’m modelling the effect of AI automation on GWP
Just like I did for hardware and software R&D, I model incremental AI automation of the
economy as a continuous transition between a world where cognitive tasks are performed by
humans (world 1) to a world where they’re performed by AIs (world 2).

The equations here are the same as for hardware R&D, in that they include a constant fraction
of tasks performed by physical capital. GWP is given by:α

(1’) - humans do all cognitive tasks𝑌 = 𝐾
𝑔

α 𝐿
𝑔

(1−α)

(2’) - AI does all cognitive tasks𝑌 =  𝐾
𝑔

α 𝐶
𝑔

(1−α)

(3’) - AI does fraction f of cognitive tasks𝑌 =  𝐾
𝑔

α 𝐿
𝑔

(1−α)(1−𝑓)𝐶
𝑔

(1−α)𝑓

Y gives GWP in each year;165 , and give the amount of (physical) capital, human labour𝐾
𝑔

𝐿
𝑔

𝐶
𝑔

and 2020-FLOP used to produce goods and services (i.e. GDP) that year.

Equation (1’) is the standard Cobb Douglas formula for GDP. Each time you double the quantity
of labour (L), GDP (Y) doubles times. And similarly, each time you double the quantity(1 − α)
of capital (K), GDP (Y) doubles times.α

Equation (2’) simply replaces number of human workers with 2020-FLOP, indicating that AI
has fully automated the cognitive tasks previously done by humans.

Equation (3’) uses the task-based Cobb Douglas model to allow for a continuous transition
between (1’) and (2’).

165 If growth is fast, Y can increase significantly over the course of a single year. To account for situations
like this, there is a more precise definition of Y: Y gives the GWP that would be produced if output
remained constant for 1 year. Mathematically, Y = ($ value of goods and services produced per second) *
seconds in a year.

164 In other words, we are imagining that for each of the three components of 2020-FLOP ($ on FLOP,
FLOP/$, 2020-FLOP per FLOP) there is an equivalent sub-sector of the economy (chip manufacturing,
hardware R&D, software R&D). FTM assumes AIs are disproportionately focussed on the latter two areas
but not the first. While advanced AIs are heavily concentrated on improving software and chip design,
they’re not concentrated on building new fabs and expanding the capacity of existing fabs. Of course, the
sharp division between hardware R&D and chip manufacture the model makes here is not entirely
realistic; the two will often merge together in practice like when a new fab must be built to manufacture a
new type of chip.

https://en.wikipedia.org/wiki/Cobb%E2%80%93Douglas_production_function
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turns out to be the fraction of GDP paid to capital, and is the share paid to cognitiveα (1 − α)
labour. The actual share of GDP paid to labour in developed countries is ~0.65 and ~0.5
globally, but this includes physical labour as well as cognitive labour.166 I’ll assume the share
going to cognitive labour globally is 0.5, and so use .167(1 − α) = 0. 5

(1’)𝑌 = 𝐾
𝑔

0.5 𝐿
𝑔

0.5

(2’)𝑌 =  𝐾
𝑔

0.5 𝐶
𝑔

0.5

(3’)𝑌 =  𝐾
𝑔

0.5 𝐿
𝑔

0.5(1−𝑓)𝐶
𝑔

0.5𝑓

The conditions under which tasks are automated are the same as for the task-based models I’m
using for software and hardware R&D. A task is automated when i) we’ve done a training run
large enough that AI can perform the task,168 and ii) we have enough runtime 2020-FLOP to run
enoughs AIs to replace all humans at the task.169

There are the same feedback loops as before, as more $ on FLOP causes more tasks to be
automated and more AIs to perform each task.

(A’) Bigger GWP → more $ on FLOP → more 2020-FLOP in largest training run → more
tasks automated → bigger GWP

(B’) Bigger GWP → more $ on FLOP → more 2020-FLOP for running AIs → more AIs per
automated task → bigger GWP

We can show these feedback loops alongside those for hardware and software.

169 As before, I adjust the Bio anchors estimate of the 2020-FLOP/s needed to run AGI to estimate the
2020-FLOP/s needed to run AI that performs only x% of cognitive tasks for 0 < x < 100.

168 As before, I adjust the Bio anchors estimate of 2020-FLOP training requirement for performing 100% of
cognitive tasks (AGI) to estimate the 2020-FLOP needed to train AI that performs only x% of cognitive
tasks for 0 < x < 100. How widely distributed these thresholds are in FLOP space is very important, and
informed by these considerations.

167 Though 0.5 is too high for world GDP, I actually care more about the share of cognitive labour in the
semiconductor industry: that’s what’s relevant for $ on FLOP.
My thinking more generally is that cognitive labour is economically more valuable than physical labour by
a wide margin, and so the share of GDP paid to cognitive labour should only be slightly lower than that
paid to labour in total. Importantly, even jobs involving “manual labour” have a very significant component
of cognitive labour to them. E.g. a plumber needs to figure out which changes to make and know how to
make them; their distinctive skills mostly relate to these cognitive abilities rather than in their body’s ability
to execute particular physical movements when instructed to do so by the brain.
Empirical research could inform a better estimate of this parameter. You could look at the wages paid to
various jobs in the US economy, and estimate the extent to which each job could in principle be done
remotely (and so is purely cognitive) vs requires physical labour.

166 I’m using a simplistic model that completely ignores tasks that require physical labour. Each task is
either done by physical capital or it’s a cognitive task that’s initially performed by humans and later
performed by disembodied AI. I discuss this in this appendix.
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Quantitative implications of the model
What does this model imply about how GWP growth changes over time? Equation (3’) implies
that the contribution to GWP growth from AI equals 0.5 * f * g(2020-FLOP). (Recall f is the
fraction of cognitive tasks automated by AI; it increases over time.) Assuming g(2020-FLOP) =
~100%, this equals ~f * 50%.

With full automation (f = 1), this implies GWP growth is 63%, doubling roughly every year.171 172

We get “explosive” GWP growth of >30% from AI when f = 0.6, i.e. with AI automates 60% of
cognitive tasks. However, f will be higher once we take into account bottlenecks, as we’ll do in
the next section.

Even so, if we quickly transition from a world where f < 0.1 to one where f > 0.8 then GWP could
quickly go from doubling every ~20 years to doubling every ~2 years. In other words, there
could be a fast takeoff according to the GWP doubling metric discussed above.

172 By the time f = 1, g(2020-FLOP) is much higher and so this model will predict a faster GWP growth in
practice. On the other hand, the model omits certain bottlenecks that will make growth slower.

171 e^0.63 = 1.9.

170 Link to diagram. The diagram doesn’t show inputs of human labour and physical capital to R&D and
GWP. It only shows the AI inputs for simplicity.

https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth
https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=l-ONbpreu-dX#
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When does the effect of AI automation on g($ on FLOP) become more significant than rising
human investment? In section 4 I guessed that rising human investment would drive g($ on
FLOP) = 22%. The contribution of AI to g($ on FLOP) is the same its contribution to GWP
growth: f * 50%. This exceeds 22% when f = 0.45.

By contrast, we estimated AI automation would dominate human investment in software and
hardware R&D when f = 0.25. So it seems like AI automation will dominate rising human
investment for g(2020-FLOP per FLOP) and g(FLOP/$) before g($ on FLOP).173

I analyse why the Full Takeoff Model (FTM) can easily predict fast takeoff in GWP, in the context
of what generic growth models say about takeoff speed, in this appendix.

I’m not modelling AI automation of generic R&D
The FTM does not include AI automating generic R&D and thereby causing a productivity
explosion.174 This means I’m modelling the role of AI in producing goods and services but not in
developing new technologies (other than those relating to software and hardware).

If I included this, it would increase the impact of AI automation on GWP and make takeoff faster.
However, perhaps not that much faster: I believe the economic effects of AI automation via
generic R&D will initially be smaller than its effects via goods and services.175

175 Why? In short, because “doubling inputs to goods and services” immediately doubles GDP while
“doubling inputs to R&D” only doubles the rate of tech progress, which takes many years to actually
translate to a doubling of GDP.
In more detail: Imagine there are two sources of GWP growth: more production inputs and more R&D
inputs. We want to compare using AI to increase production inputs via using AI to increase R&D inputs.
There are two reasons to think the effect on GWP would be bigger and quicker via increasing production
inputs. Firstly, data suggests that each doubling of R&D inputs causes less than 1 doubling of TFP; but in
standard models doubling production inputs doubles GWP. This implies that doubling production inputs
has a bigger effect on GWP. Secondly, to double GWP via production you only need to double annual
production inputs. But via R&D what matters is cumulative R&D inputs, which are harder to double (even
if your annual inputs instantaneously doubled, it would take a while for cumulative inputs to double).
Combining these two points: to double GWP via production you need to double annual production inputs,
but via R&D you need to more than double cumulative R&D inputs.
There are some good reasons to think increasing production inputs would have smaller effects than I’m
claiming. i) Past a certain point people don’t want more of the same goods and services, they want new
types of good; so increasing production inputs won’t help unless you’ve used R&D to invent new goods. ii)
More technological, social and regulatory barriers to automating the provision of goods and services than
to automating R&D. I discuss these further in TODO.

174 This is imagined in the Cold Takes description of PASTA.

173 What’s driving the difference here? Firstly, I’ve assumed that capital is more important to GWP than to
software or hardware R&D inputs. (Capital does 50% of GWP tasks, 30% hardware tasks, 0% of software
tasks.) AI automation doesn’t (directly) affect this capital component, so has smaller effects on GWP than
on hardware and software R&D inputs. Secondly (and less importantly), I assume human inputs grow at
22% for $ on FLOP vs only 17% for hardware R&D. This means there’s a lower bar for AI automation to
dominate inputs for hardware, compared with $ on FLOP.

https://web.stanford.edu/~chadj/IdeaPF.pdf
https://www.cold-takes.com/transformative-ai-timelines-part-1-of-4-what-kind-of-ai/
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The takeoff model so far
The takeoff speeds model so far can be summarised as follows:

● We’re forecasting the calendar time to cross the effective FLOP gap.
○ effective FLOP gap = How much bigger does your training run need to be to

automate 100% of cognitive tasks rather than just 20%?
● This depends on the size of the effective FLOP gap and on how quickly we’re able to

increase the 2020-FLOP used in the largest training run.
● 2020-FLOP has three components such that:

g(2020-FLOP) = g($ on FLOP) + g(FLOP/$) + g(2020-FLOP per FLOP)
● Section 4 analysed the effects of fast rising human investments on each of the three

components. It can be thought of as estimating the effect of rising human labour and
physical capital inputs on each component.176

176 Section 4 estimated the growing input as measured in real $, rather than separately estimating the
growth of labour and capital. The simplest assumption is that real inputs of both labour and capital are
growing at this same rate.
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177

● This section analysed the effect of AI automation on each of the three components. As
2020-FLOP increases, we automate more tasks and have more AIs performing each
task. These AI inputs are combined with human labour and capital inputs for each
component.

177 Link to diagram.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=0tQNsXC7lSRR#
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178

● The growth of each component accelerates as we cross the effective FLOP gap and
automate more tasks. By the time we have fully automated all the cognitive tasks for any
given component, it doubles in a year or much less.

○ We found that, for software and hardware R&D, the effects of AI automation are
smaller than those of fast rising human investments (L and K) until ~25% of
cognitive tasks have been automated. For $ on FLOP the threshold was ~45%.

○ These thresholds will be somewhat higher after we take bottlenecks into account
in the next section.

○ Once we’ve reached these thresholds, the feedback loops in green and orange
have become more significant in increasing g(2020-FLOP).

New metrics
The modelling introduced in this section, and the additional assumptions we must now make,
allow us to calculate some other metrics of takeoff speed that were discussed in section 2.

● Successive GWP doubling times.

178 Link to diagram.

https://lucid.app/lucidchart/8b81601e-b08a-43d3-b23c-b75ff1c0857d/edit?invitationId=inv_7ab5cfff-507f-4d74-9ec4-35a132cb873d&page=MaPNeDZHl_xi#
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○ Equation (3’) calculates GWP based on the inputs of capital, (human) labour, and
2020-FLOP. As AI automates more tasks the importance of labour falls, that of
2020-FLOP rises, and GWP growth accelerates.

○ If we transition quickly from world 1 to world 2 GWP growth can quickly go from
its current level (~3%) to much faster (>60%). The speed of this transition
depends on the effective FLOP gap and on the average g(2020-FLOP) as we
cross the gap.

○ The sensitivity analysis will report the largest ratio between successive GWP
doubling times during this transition. Remember I’m calling ratios > 4 a “fast”
takeoff, ratios <=2 a “slow” takeoff, and ratios between 2 and 4 a “medium”
takeoff.

● Time from “AI could readily automate x% of tasks” to “AI could readily automate
y% of tasks”.

○ To determine when tasks can be automated I make assumptions about i) the
2020-FLOP training requirements for each task and ii) the 2020-FLOP/s runtime
requirements for each task.

● How many AGIs can we run?
○ The training and runtime requirements for the final task are the highest and can

be loosely interpreted as the AGI training and runtime requirements.179

○ The model calculates the largest training run in each timestep, so can calculate
when we first train AGI

○ The model also calculates the total quantity of 2020-FLOP/s in each timestep, so
can calculate how many AGIs we could run in each timestep.

○ This allows the model to calculate the first timestep in which we can train AGI
and run X AGIs, for any X.

■ In fact it can calculate the number of AI that automates x% of tasks, for
any x. AGI is the special case when x = 100.

○ I use this to calculate the metric time from AI that could automate 20% of
cognitive tasks to when we can run 10 billion AGIs.

■ My startpoint of “automating 20% of cognitive tasks”, requires the training
2020-FLOP to train AI that can automate 20% of cognitive tasks and the
runtime 2020-FLOP to run enough AIs to replace human workers at those
tasks.

●
● Cognitive output.

○ As AI automates more cognitive tasks the model calculates total cognitive output
in each timestep.

○ This is simply the output on tasks not performed by capital. The formula is:

𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 =  𝐿
𝑔

(1−𝑓)𝐶
𝑔

𝑓

179 Those requirements are sufficient to train an AI and run it to do any task as well as a human worker. In
practice, AIs with lower requirements are used to perform most tasks in the model as this is more
efficient. But you could in principle use a more expensive system to perform every task.
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○ This notion embraces the complementarity between human and AI cognitive
labour by tracking the output from both of them combined. It aims to side-step the
complementarity between cognitive labour and physical capital in order to get a
metric of AI capabilities that is independent of physical capital bottlenecks.

○ The notion also avoids leaning on any specific and arbitrary capability level like
“AGI”; total cognitive output is the result of AI systems of varying levels of
generality and capability, some of which may be tools and some of which may be
agentic.

○ The units of cognitive output are remote human equivalents. More precisely,
“How many remote human workers would be needed to generate the same
economic value per day as we’re getting from the combined cognitive output of
humans and AIs?”180

○ I use this to calculate the metric: time from AIs being a 2X multiplier on
human cog output to being a 10X multiplier.

Significant AI automation need not happen before AI risk
If you believe that the most likely path to AI causing existential risk is via accelerating economic
growth, or having vastly superior cognitive capabilities, then there will be significant effects from
AI automation before this happens. In this case, the dynamics discussed in this section are
potentially extremely important as they precede x-risk.

On the other hand, if you think it’s likely existential risk comes from pre-AGI systems that
perform some tasks excellently but cannot perform most tasks, the analysis of this section is
much less relevant. AI won’t be sufficiently capable and general to accelerate software R&D,
hardware R&D, or GWP before it poses x-risk.

My own view is that AI would probably need very significant degrees of autonomy in a very wide
range of cognitive tasks to pose existential risk via power-seeking. For example, it would need
to be able to perform ~all tasks in one or more broad areas like AI R&D, social manipulation,
hacking and business/military strategy. And my guess is that this in turn would require AI to
perform a large percentage of total cognitive tasks, probably >70%.181

Summing up
This section analysed the effect of AI automation on the speed crossing the effective FLOP gap,
g(2020-FLOP). I did this separately for each of the three components – g(2020-FLOP per

181 In particular, fully automating any of these high-level tasks requires many capabilities which will also
help to fully automate or partially automate many other high-level tasks.

180 So “cognitive output = 1 billion remote human workers” means “if we continued to produce cognitive
output at the current rate for a year, then the total cognitive output produced would have the same value
as that produced by 1 billion remote human workers working for 1 year”.

https://docs.google.com/document/d/1smaI1lagHHcrhoi6ohdq3TYIZv0eNWWZMPEy8C8byYg/edit#heading=h.pwdbumje5w8r
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FLOP), g(FLOP/$) and g($ on FLOP) – using the same task-based model for each.
Unsurprisingly, AI automation increases these growth rates significantly as we cross the
effective FLOP gap. By the time AI has automated all cognitive tasks in a component, it doubles
in months or faster.

When does the effect of AI automation become significant, compared to the rising human
investments discussed in section 4? In the model used here, the answer depends on the
component in question. For g(2020-FLOP per FLOP) and g(FLOP/$), i.e. for software and
hardware progress, AI automation becomes significant when roughly ~25% of cognitive tasks
have been automated; for g($ on FLOP) it was roughly when ~45% of cognitive tasks have been
automated.

These AI automation dynamics are less relevant for takeoff speeds if you think AI will pose an
existential risk before it automates a significant fraction of tasks.

Modelling AI automation required additional assumptions about the compute needed to train
and run AIs that can perform x% of cognitive tasks for 0 < x < 100. These additional
assumptions allow us to calculate the way in which the % of tasks performed by AI increases
continuously over time.

The result model can calculate metrics of takeoff speed relating to GWP, the number of AIs, and
the total cognitive output of AIs and humans.

What is the bottom line here for takeoff speeds? In this framework the values of takeoff speed
metrics – e.g. how long from 20% automation to AGI – depend on the training and runtime
requirements of pre-AGI systems, and how these combine with the rising human investments
from section 4 and the bottlenecks described in the next section. Unfortunately, I’m not aware of
a simple analytically tractable way to estimate them, and so this section did not make new
central best-guess estimates of takeoff speed.182 My approach instead is to conduct a sensitivity
analysis on a simulation of the model, which I’ll present in section 7.

The main body of the report continues in a new doc.

Appendices
Appendices to add:

● The shape of the task distribution over log(FLOP); maybe there’s a tail of tasks?
● Are we assuming “AGI is one big model” vs “lots of little models”?

182 Though I do take the numbers in section 4 to be very rough best guesses even accounting for AI
automation. That’s because the numbers in section 4 are too high for when we start crossing the effective
FLOP gap, and too low after AI automation kicks in.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.6fd6fc8n9n
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Literature on brain size - IQ correlations
Edit: a new meta analysis has been released, which comes down a little more conservative than
I did here.

My current guess is that a 10% more brain volume → 4.5 more IQ points.

I skimmed three studies.
1. Gignac & Bates (2017) is a large recent meta analysis.

a. Its headline figure is a correlation of 0.29 (95% CI = 0.24, 0.33) between brain
volume and IQ.

b. It found the result depended on the accuracy of the IQ measurement used. ‘Fair’,
‘good’, and ‘excellent’ measurements had correlations of 0.23, 0.32 and 0.39.

i. It claims the adjustments it makes here are probably too small, as
empirical measurements tend to be less reliable than normative samples
used to rate measurement procedures.

c. At a glance, it doesn’t seem to discuss confounders much. Health and education
seem like possibilities. I don’t know how carefully the object level studies
controlled for this.

d. If the above two factors cancel (under-adjusting for mismeasurement of IQ and
not including confounders) then the estimate of correlation due to causation is 0.3
- 0.4. (I’d guess this cancelling assumption leaves the correlation too high.)

e. We can use the correlation to estimate that a 10% bigger brain increases
intelligence by 4.5 - 6 IQ points.

i. A correlation of z between X and Y means: increase X by 1 standard
deviation → increase Y by z standard deviations. (This assumes the
correlation is causal.)

ii. I couldn’t see data about the standard deviation of brain sizes for the
study participants; but this seems to be ~10% in the general population.
So 1 standard deviation of brain size = 10% bigger brain.

iii. So this study is saying a 10% bigger brain → 0.3 - 0.4 standard deviations
of IQ, or 4.5 - 6 IQ points. (A standard deviation of IQ is 15 IQ points.)

f. I’d guess this estimate is too high due to the seeming lack of effort to adjust for
confounds, but I’m not confident about this.

2. Nave et. al (2018) is (I believe) the largest empirical study to date, bigger than all
previous investigations combineed (N = 13,608).

a. The most relevant figure here is a correlation of 0.25. (They get this after
including various confounders and trying to adjust for mismeasurement of IQ.)

b. This paper includes a few confounds (social deprivation, place of birth, height,
genetics) and did other robustness checks.

c. I expect they have under-adjusted for mismeasuring IQ, for the same reasons as
Gignac & Bates (2017).

d. We can use the correlation to estimate that a 10% bigger brain increases
intelligence by 4 IQ points.

https://royalsocietypublishing.org/doi/10.1098/rsos.211621
https://journals.sagepub.com/doi/full/10.1177/0956797618808470#
https://www.leadersproject.org/2013/03/01/understanding-the-normative-sample/
https://www.google.com/search?q=standard+deviation+of+brain+size&rlz=1C1VDKB_enUS931US934&sxsrf=APq-WBsnBKHx9WUbMplyxHUITisNNiUfHA%3A1646256286295&ei=nuAfYr_WEcDKkPIP7rmzCA&ved=0ahUKEwi_nZ3Jrqj2AhVAJUQIHe7cDAEQ4dUDCA4&uact=5&oq=standard+deviation+of+brain+size&gs_lcp=Cgdnd3Mtd2l6EAMyCAghEBYQHRAeMggIIRAWEB0QHjIICCEQFhAdEB4yCAghEBYQHRAeMggIIRAWEB0QHjIICCEQFhAdEB4yCAghEBYQHRAeMggIIRAWEB0QHjIICCEQFhAdEB4yCAghEBYQHRAeOgcIIxCwAxAnOgcIABBHELADOgQIIxAnSgQIQRgASgQIRhgAUIMCWNIeYPcfaAFwAXgAgAGUAYgBtguSAQQwLjEymAEAoAEByAEJwAEB&sclient=gws-wiz
https://journals.sagepub.com/doi/full/10.1177/0956797618808470
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i. This is just as above, except that the standard deviation of brain volume
in this study was 9.3%.183

ii. The correlation means that a 9.3% larger brain → 0.25 standard
deviations of IQ, or 3.75 IQ points. (Again assuming the measured
correlation is causal.)

iii. So a 10% larger brain → 4 IQ points.184

e. I don’t see a strong reason to think this is biased in either direction overall.
3. This 2019 sibling study (N = 1022) finds a correlation of 0.18 within families and 0.33

overall.
a. They of course control for family environment, which will include health and

education.
b. Again, I expect they have under-adjusted for mismeasuring IQ. Indeed, they find

strong evidence that their IQ tests are less reliable than they assume in their
adjustment.185

c. We can use the correlation to estimate that a 10% bigger brain increases
intelligence by 3.5 IQ points.

i. This is just as above, except that the standard deviation of brain volume
in this study was 8%.186

ii. So a 10% larger brain → 3.5 IQ points.187

d. I think this is too low, due to under-adjusting for the mismeasurement of IQ.

To summarise the above evidence on the effect of a 10% bigger brain:
● Gignac & Bates (2017): 4.5 - 6 IQ points. I’d guess this is too high, but I’m not sure. I

don’t have a good understanding of this sprawling meta analysis.
● Nave et. al (2018): 4 IQ points. This doesn’t seem biased in either direction and is the

biggest study out there.
● The sibling study: 3.5 IQ points. I think this estimate is too low, so I see this as easily

consistent with the true effect being 4 - 5 IQ points.

Overall, I’d guess a 10% more brain volume → 4.5 more IQ points. I’ve adjusted slightly
upwards from Nave et. al (2018) due to Gignac & Bates (2017). This corresponds to 1 standard
deviation of brain size → 0.3 standard deviations of IQ.188

188 Assuming 1 standard deviation is a 10% increase in brain size and a 15 point increase in IQ.
187 10% bigger brain → 0.18 * 10/8 = 0.23 standard deviations of IQ = 3.45 IQ points.

186 Figure S1 finds brain volume mean (standard deviation) is 1270 (101) for males, and 1100 (88) for
females. 1270/101 = ~1100/88 = ~ 8%.

185 For reasons that are unclear, the correlation between Verbal and Performance observed in the MCTFR
does not seem consistent with such high reliability. We nevertheless used a conservative value of 0.82 in
calculating the disattenuated associations; the assumption of a lower value would lead to larger apparent
effects.

184 3.75 * 10/9.3 = 4.03.
183 See figure S3 in the supplementary material.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440690/#SD1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7440690/#SD1
https://journals.sagepub.com/doi/full/10.1177/0956797618808470
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Ramp up will be bottlenecked by supply of FLOP
In this regime of fast rising investment, I expect the primary bottleneck for investment is not
going to be willingness to pay, but instead supply constraints.

For example, if someone wanted to spend $100 billion on AI chips today, they simply couldn’t
(NVIDIA data center revenue in 2022 was ~$10b, and they’re a large fraction of the AI chip
market). If the person insisted on spending that much, they’d be forced to buy non-AI chips that
are much less well suited for AI. In this example, the bottleneck on “get a quantity of AI chips
that would be worth $100 billion at current prices” is not willingness to pay but instead how
quickly chip manufacturers can scale up production of AI chips. Large willingness to pay can
expedite this process, but only to some extent.

Similarly, if someone wanted to spend $100 billion on AI software researchers today, the key
bottleneck would be talent availability. If they wanted to hire good quality people, they’d be
limited by the time it takes to attract and train good people to grow a small field. In this example,
the bottleneck to “get a quantity of AI software workers that would cost $100 billion at today’s
prices” is how quickly you can attract and train high quality talent.

So I analyse how quickly we can ramp-up AI investments by focussing primarily on the supply
side.189

I ignore the rising price of inputs to AI development after wake up
One factor I (try to) put to one side is the likelihood that the cost of inputs to AI investment will
rise significantly as demand far outstrips supply. If the actual number of AI software workers
remains constant, but their salaries have all doubled, I don’t want to say that software
investment has doubled. Instead, I would say that real software investment has stayed constant.
The numbers in this report should all be interpreted in this vein as referring to the growth of real
inputs to AI, measured in the number of quality-adjusted workers, physical capital and computer
chips. In this way, I (try to) sidestep the way in which high demand will drive up the price of real
AI investments.190

190 I feel confused about whether this move will lead to unrealistic predictions about the things I care
about. E.g. I will end up talking about “FLOP/$” numbers that, because I’m ignoring the effect of high
demand on prices, are predictably too low. But what I ultimately care about is the total FLOP available in
the world, not the amount that is paid for; I’m only using “FLOP/$” as a measure of hardware progress.
The question is whether my forecast of the available FLOP is distorted by not explicitly modeling this
factor.
I’ll forecast “$ on FLOP” numbers that are predictably too low for the same reason, and again it’s unclear
how much this matters.

189 I don’t think supply places a strict bottleneck on annual AI investment. If there’s higher willingness to
pay on the margin, that will somewhat increase real AI investment by inducing more people to abandon
otherwise lucrative activities. So demand does make a difference on the margin. But, past a certain point,
that marginal difference is small and you approach hard limits in terms of (e.g.) the time it takes to find
and train additional people, and the limited number of people who have the expertise to deliver that
training.

https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-fourth-quarter-and-fiscal-2022
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Bold assumption to make the analysis somewhat tractable
One thing I’ll need to forecast is the growth of FLOP produced each year globally.191 By analogy
with section 3, I calculate this as:192

FLOP per year = $ on FLOP per year * FLOP/$

I forecast each of the two components by mapping them to two sources of growth in FLOP
production. The two sources are:

1. More chips. Increases in the number of chips produced per year. E.g. more fabs, more
production lines within each fab.

2. Better chips. Increases in FLOP per chip. E.g. smaller node sizes, specialised chip
designs.

In reality, I suspect these two sources can’t always be cleanly separated.193

My bold assumption is that “more chips” corresponds exactly to more $ on FLOP, and that
“better chips” corresponds exactly to more FLOP/$. In particular, I assume g($ on FLOP per
year) = g(number of chips produced per year), and that g(FLOP/$) = g(FLOP per chip).194

Then my strategy is to:
● Forecast g($ on FLOP per year) via forecasting how quickly we will expand chip

production after “wake up”.
● Forecast g(FLOP/$) by assuming that hardware R&D has driven historical growth in

FLOP/$, and forecasting inputs to hardware R&D after “wake up”.

194 I.e. I assume that the price of chips is constant. People create better chips so that they can sell more
chips at the same price, not to increase the price per chip. I think this assumption is more accurate over
long timescales than short timescales. Over short timescales, you might be able to sell better chips for
more. But in the long run, the price of the most recent cutting edge chips may be constant at ~$10,000
per chip.

193 Imagine we build a new fab with smaller node size, and compared its FLOP production to an old fab.
We ask: Is the new fab’s greater FLOP production due to better chips, or due to expanded production?
The new node size may use a completely different kind of chip that doesn’t map cleanly to the old chip.
As a result, it may be ambiguous whether the new fab has more chips, relative to the old fab. So it’s
ambiguous to what extent the greater FLOP production of the new fab comes from more chips vs better
chips.

192 In section 3 I calculateed FLOP for the largest training run = $ on FLOP for the largest training run *
FLOP/$. (I’m putting aside software progress for now.)

191 What do I mean by “total FLOP produced each year”? Take all the chips produced over the course of
one year, run them all non-stop for one year, and ask: How many FLOP did you do? This is what I mean.
A more precise statement would be “the annual FLOP capacity of 1 year’s chip production”. I use this unit
so we can talk about FLOP rather than FLOP/s. This is useful because I’m ultimately concerned with how
many FLOP we have available for the largest training run in each year, and only indirectly concerned with
FLOP/s.

Perhaps the right thing to do is to replace “FLOP/$” with “FLOP/s per chip” and replace “$ on FLOP” with
“number of chips”, to avoid the reference to “$”.
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Source of growth Equivalent quantity in
takeoff framework

Cause of growth

More chips g($ on FLOP per year) Build more fabs and bigger fabs

Better chips g(FLOP/$) Hardware R&D

I discuss why my bold assumption might be wrong, and how a more realistic assumption might
change the results, in the following footnote.195 This part of the framework feels conceptually
confused, and I’d welcome suggestions for improvement.196

Details about assumptions of the Full Takeoff Model
This appendix gives some additional details on assumptions made by the Full Takeoff Model
(FTM). For additional information you could:

● See the FTM’s behaviour for your chosen deterministic inputs here, including
justifications for my preferred values.

● Inspect the functionality of this old spreadsheet version of the FTM.
● Ask Epoch for the most up to date python code.
● Read this concise mathematical description of the FTM (courtesy of Epoch).

Accounting for the “stepping on toes” effect when estimating the returns to
hardware R&D
Suppose you invest $X in R&D. If there’s a stepping on toes effect, then the effective R&D input
is only X^lambda, lambda < 1. Some effort is duplicated (or otherwise wasted due to the
difficulty of parallelising R&D effort). So doubling investment only increases effective inputs by
2^lambda.

196 Repeating from an earlier footnote, perhaps I should replace “FLOP/$” with “FLOP per chip” and
replace “$ on FLOP” with “number of chips”, eliminating the reference to “$” entirely.

195 I suspect my assumption gives too much credit to “more chips”, and not enough credit to “better chips”,
in explaining the historical growth of FLOP production. I assume that all the increase in [$ on FLOP] is
due to “more chips”. But the price of chips has probably increased over time, so that some of the increase
is due to “better chips”. How would giving more credit to “better chips” change the results? Firstly, it would
mean giving historical hardware R&D more credit for the growth in FLOP production, and so increase my
forecast of how quickly hardware R&D will increase FLOP production after ”wake up”. Secondly, it would
slightly lower my estimate of how quickly we’ll be able to expand chip production after “wake up”. I’m not
sure how these effects would net out; my guess is that the first would be larger and that the net effect
would be fairly small.
I assume that the only reason why [$ on FLOP] increases is because of more chips; but in reality I’d
guess that it also increases due to better chips. People pay more for SOTA chips over time. This means
that

https://takeoffspeeds.com/playground.html
https://docs.google.com/spreadsheets/d/1NSGcSkW53xkhVq4SDpUcBEQDQEPWnwhjWaRKsvxcdfE/edit?usp=sharing
https://epochai.org/
https://takeoffspeeds.com/description.html
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How does this affect our empirical estimate of the returns to hardware R&D?

Let g_I be the growth of R&D inputs, g_O be the growth of the relevant R&D output metric,
lambda be the stepping on toes parameter and r be the returns to hardware. For hardware R&D
increasing FLOP/$, we have historical observations of g_I and g_O and must infer lambda and r
from the data. With the semi-endogenous growth model, if g_I grows at a constant rate, the
equation linking these quantities is:

g_O / g_I = lamba * r (1)

Here’s what happens in the main text. Let g_I_h and g_O_h be the observed historical growth
rates of R&D inputs and FLOP/$. In the main text I assume lambda = 1 and then use (1) to infer
r = g_O_h / g_I-H. I then make a hypothesis about the future growth of inputs after “wake up”
g_I_f, and infer future growth of the FLOP/$ g_O_f. Mathematically, this is:

g_O_f = g_I_f * r = g_I_f * g_O_H / g_I_h

(g_I_h and g_O_h give historically observed growth of hardware inputs and FLOP/$; g_I_f and
g_O_f are forecasts of the same quantities after “wake up”.)

If instead I’d assumed some stepping on toes then I’d used (1) to infer r = g_O_h / (g_I_h *
lambda). My estimate of r would increase by a factor 1 / lambda, as the growth of effective
inputs have increased more slowly due to stepping on toes. Then I’d have made the same
forecast about growth of inputs after “wake up” and inferred future growth of FLOP/$ as follows:

g_O_f = g_I_f * lambda * r = g_I_f * lambda * (g_O_H / g_I_h * lambda) = g_I_f * g_O_H / g_I_h

g_O_f is exactly the same. My estimate of r is higher in a way that exactly offsets stepping on
toes. So stepping on toes doesn’t affect the predicted growth of FLOP/$ after “wake up”.

There is one significant caveat. Equation (1) assumes annual inputs are growing at a constant
rate. If annual inputs start growing more quickly than they used to – like they will after “wake up”
– things are more complex. In this case, a stepping on toes dynamic (lambda < 1) will increase
the lag between the faster growth of annual inputs and the faster growth of the output. You can
see this dynamic play out in this sheet. So the stepping on toes effect increases the lag between
“faster growing hardware R&D inputs” and “faster growing FLOP/$” and so makes takeoff
slower.

The diminishing returns to hardware and software become steeper over
time; ideas become increasingly hard to find
By the time we reach physical limits of hardware, further progress is impossible. This
corresponds to r = 0 (each doubling of cumulative R&D inputs causes 0 doublings of FLOP/$).

https://docs.google.com/spreadsheets/d/12V2JISfk05_-RcTdcMewlcVIb5I5kSWvSjNvziE5StU/edit#gid=0
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The FTM assumes r decreases towards 0 by a constant amount each OOM of FLOP/$ increase
between now and the physical limit. E.g. if we’ve 6 OOMs from the physical limit and currently r
= 2 then by the time FLOP/$ has increased by 3 OOMs, the FTM assumes r = 1.

This dynamic can capture the expectation that hardware returns should trend back to the
average R&D returns across all sectors of the economy.197 As long as the physical limits are
assumed to be at or above 1e25 FLOP/$, introducing physical limits in this way doesn’t
significantly affect the results.

And the same model is used for software.

You can see the assumptions about these physical limits, and justifications, in the “additional
parameters” tab here.

Full derivation of the equation for hardware R&D
It's the standard semi-endogenous equation, with a "stepping on toes" effect, and with two
complications.

Here's a derivation of the equation ignoring "stepping on toes" and the additional complications.

197 Are ideas getting harder to find estimates the average returns to the overall economy to be r = ⅓, much
lower than the returns for hardware.

https://takeoffspeeds.com/playground.html
https://web.stanford.edu/~chadj/IdeaPF.pdf
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Notice this implies that g(A) = m * g(R). In the report I use different variable names, so let's stick
with those of the report: g(O) = r * g(I).

Now to include stepping on toes in this set-up I alter the semi-endogenous equation in the
standard way by adding a parameter lambda: A = delta * r^lambda * A^phi.

I then define 𝑅(𝑡) =  
−∞

𝑡

∫ 𝑟(𝑡)λ𝑑𝑡

This (I claim) doesn’t change the result of the above derivation. We again get A = constant * R^(
1/(1 - phi)) = constant * R^r. So g(A) = r * g(R).

But my new definition of R implies g(R) = lambda * g(r). So g(A) = r * g(R) = r * lambda * g(r).

In the report's notation: g(O) = r * lambda * g(I).

Then two complications are added:
1. For hardware R&D (but not software R&D) I replace r^lambda with CES(r^lambda,

K^lambda) where K is the physical capital used for R&D and r continues to be the
number of researchers. This allows for physical capital to play a role in R&D, and
potentially allows for physical capital to bottleneck R&D progress.
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2. The returns to R&D r decreases towards 0 as we approach physical limits (more).

For a full implementation reach out to Epoch or check out this (messy!) sheet.

Aggregating one-time productivity gains from different sources
My approach is to quantify the individual effects mentioned, combine the relevant ones together,
and maybe do a final adjustment based on my “gut”.

Productivity gains from different sources:
● Faster serial speed

○ Paul and Carl think a 1000X speed-up is possible
○ E.g. 1 AGI running for 1000 subjective years rather than 1000 humans working

for 1 year each
○ I’m calling this ~10X198

● No leisure / sleep: 3X (people spend 8 hours a day working)
● Better motivation: 2X
● Average vs top productivity

○ Among humans, average vs top productivity is >100X (global average income is
~$10k, most productive people can earn >$1m)

○ But all AGIs are as productive as the most productive AGI
○ So this naively gives AGI a gain of ~100X

Multiplying these gains together gives 10 * 3 * 100 * 2 = 6,000.

One-off gains for AGI in R&D. I will exclude "average vs top productivity" as researchers are
mostly close to the top global average productivity. That leaves me on 10* 3 * 2 = 60X.

One-off gains for AGI in goods production. I don't think serial speed will apply very much in
goods production. I also feel pretty suspicious of the “average vs top productivity” figure, in
particular that AGIs could increase everyone’s productivity by 100X despite lacking the context
of their jobs. This leaves me 3  * 2 = 6X.

In the FTM these assumptions are combined with a starting estimate of the AGI’s runtime
compute of 1e17 FLOP/s using 2020 algorithms. See rows 5 and 7 here.

Modelling $ on FLOP
Roughly speaking, I assume:

$ on FLOP for training run = GWP * fraction of GWP spent on FLOP * fraction of FLOP on
largest training run

FLOP for a training run = $ on FLOP for training run * FLOP/$

198 It turns out that you can derive the size of this effect from the size of the “stepping on toes” effect. If
you quantify that effect in the usual way with lambda < 1, then a 1000X speed up increases productivity
by 1000^(1-lambda). 10X gain corresponds to lambda = ⅔, which is roughly my best guess for lambda.

https://epochai.org/
https://docs.google.com/spreadsheets/d/1NSGcSkW53xkhVq4SDpUcBEQDQEPWnwhjWaRKsvxcdfE/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1r-WxW4JeNoi_gCMc5y2iTlJQnan_LLCF5s_V4ZDDMkI/edit#gid=0
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The quantities are forecast as follows:
● GWP: use the task-based model for how AI automation affects GWP
● Fraction of GWP on FLOP: section 4 analysis of growth of $ on FLOP globally

○ I guessed $ on FLOP globally might grow at ~22% after “wake up”
○ GWP growth is 3%, so this implies that the fraction of GWP on FLOP will grow at

~19%.
○ So my central estimate is ~19%.

● FLOP/$: grows due to hardware R&D. Section 4 analyses the effect of human inputs;
section 5 analyses the effect of AI automation.

● fraction of FLOP on largest training run: analysed in section 4.

Annual production vs stock
The above equation ignores that we can use chips bought in previous years in training runs. In
fact the equations used in the FTM are:

global FLOP year y+1 = global FLOP year y + GWP * fraction of GWP on FLOP * FLOP/$

FLOP for training run = global FLOP * fraction of FLOP used on largest training run

In essence, the above equation pretended that we produce all our chips from scratch each
time-step, while these ones allow us to accumulate a stock of chips over time. Each year’s
production simply adds a little to that stock.

I do not explicitly distinguish between FLOP used for AI and other FLOP. I think this is a
weakness of the FTM as it stands, which I explain more in this doc.

FTM assumes no tasks are done by physical labour
● The better model would have:

○ Some tasks done by physical labour, some by cognitive labour, some by physical
capital

○ One process whereby AI automates cognitive labour.
○ A second process whereby robotics automates physical labour.

● But my model only includes the first process: AI automating cognitive labour. I ignore
physical labour.

Calculating the training requirements for “AI can readily perform x% of
cognitive tasks”
The Full Takeoff Model (FTM) makes assumptions about the training requirements for “AI that
can readily perform x% of cognitive tasks” for all x. In other words, it makes an assumption
about the full shape of the following graph:

https://docs.google.com/document/d/1iz437LMV31VqznCRVXfMnc6uksG551BSqUNJxLvjVlg/edit
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The FTM calculates the full shape of the curve mechanically from just one input, the effective
FLOP gap from 20% of tasks to 100%. The method, described mathematically here, creates a
curve shaped like that in the picture above. In particular:

● Each additional OOM of training unlocks more tasks than the last.
○ This seems very likely as recently each OOM of training has seemingly unlocked

very few tasks.199 I’d expect a gradual transition with each OOM unlocking more
tasks than the last.

● The effective FLOP gap from ~1% to 20% is half the effective FLOP gap from 20% to
100%.

○ My best guess would actually be that ~1% to 20% is roughly as big as 20% to
100%, or bigger.

○ But if we used that assumption, we’d have less flexibility in specifying the
20%-100% effective FLOP gap. E.g. suppose we wanted to say AGI is 1e30
FLOP and the effective FLOP gap is 4 OOMs. Then our assumption would imply
that ~1% of tasks required training of ~1e22 FLOP. But we’ve already seen
training runs of 3e24 FLOP, implying that today’s systems can readily perform
>>1% of cognitive tasks. The model would predict that AI could readily200 add
>>$500 brillion/year to GDP, in contrast to observed AI revenues.

200 Reminder: the phrase “readily” here indicates that i) it would be profitable for organisations to do the
engineering and workflow adjustments necessary for AI to perform the task in practice, and ii) they could
make these adjustments within 1 year if they made this one of their priorities.

199 Annual revenues from AI are estimated at ~$10 - 100b. (E.g. here, here, here, here; I don’t know how
reliable these estimates are, or even their methodologies.) But performing even 1% of tasks would be
worth ~$500b because about ~$50tr is paid in wages each year globally.

https://docs.google.com/spreadsheets/d/1gBeQG45HNWoVeed8KbVJxWPdNZEZvCTYXlitiovtGG8/edit#gid=1121904834
https://medium.com/dataseries/artificial-intelligence-market-size-a99e194c184a
https://www.grandviewresearch.com/industry-analysis/artificial-intelligence-ai-market
https://www.globenewswire.com/news-release/2022/04/19/2424179/0/en/Artificial-Intelligence-Market-Size-to-Surpass-Around-US-1-597-1-Bn-By-2030.html
https://www.statista.com/statistics/941835/artificial-intelligence-market-size-revenue-comparisons/
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○ Our actual assumption allows us to specify scenarios with fairly large effective
FLOP gaps without this implied inconsistency. This is a reason to expect the
actual effective FLOP gap to be smaller, than the maximum effective FLOP gap
allowed by the model.

Different assumptions about the exact shape of the curve would change the bottom line
somewhat. And perhaps some useful insight could come from thinking more carefully about
implications of different curves, and testing out different possibilities (e.g. a log-normal
distribution). But I suspect most of the ‘action’ is in the single scalar parameter I’ve pulled out –
the effective FLOP gap – that describes how spread-out in FLOP space different tasks are.

How does physical capital changes over time in the FTM?
● Cognitive output is grows fast due to AI automation.
● Initially, this increases GWP a lot because cognitive tasks are important to GWP (they’re

paid a high fraction GWP).
● More GWP → more reinvestment → faster growth of physical capital.
● But after a while, the abundance of cognitive tasks reduces their importance to GWP

(they’re paid a much lower share of GWP). GWP is bottlenecked by physical capital.
Further cognitive output growth doesn’t affect GWP much at this point. So the
reinvestment in physical capital stops rising: ~constant GWP → ~constant reinvestment
→ ~consant growth of physical capital.

● Eventually physical capital grows faster and faster because of tech progress
○ Higher TFP allows you to accumulate capital more quickly.
○ This takes unrealistically long in the FTM.
○ The reason it takes so long is that the FTM assumes TFP grows exogenously

rather than modelling AI automation’s effect on generic R&D; it takes many
decades before physical capital is doubling every year.

○ In fact I expect it would take much less long that for billions of AGIs to design
robot-factories that collectively self-replicate in a year.

How much does AI automation accelerate our progress through
the effective FLOP gap overall?
We re-ran all the scenario analyses from this section, excluding the speed-up effect of AI
automation. This allowed us to compare the takeoff speed with and without AI automation.

Takeoff speed

Time from AI that could readily Time from AI that could readily

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.fx5ojmz239vb


84

automate 20% economic tasks to AI
that could readily automate 100%.

automate 20% R&D tasks to AI that
could readily automate 100%.

Scenario Including AI
automation

Excluding AI
automation

Including AI
automation

Excluding AI
automation

Short, best
guess

3.7 16.5 4.4 8.8

Medium, best
guess

5.0 14.0 5.5 12.5

Long, best
guess

15.7 63.6 18.0 56.8

Medium,
aggressive

0.4 0.9 0.6 0.9

Medium,
conservative

27.0 46.5 32.3 49.4

Overall, it looks like AI automation increases our speed crossing the effective FLOP by ~2.5X.

Am I assuming AGI will take the form of one unified system, or
many narrow systems working together?
Early writing about AGI tended to assume that it would take the form of one system with general
capabilities. Others have since suggested that AGI could instead consist of many individually
narrow AIs which work together to collectively have general capabilities.

When developing this framework, I tried not to take a strong stance on this question. Ultimately,
the mathematical form of the Full Takeoff Model (FTM) fits best with the latter view. The FTM
has dozens of different tasks, which each have different training and runtime requirements. The
most natural interpretation is that different AIs perform each task.

If you want to make the FTM consistent with the “one general system” interpretation of AGI, you
could say that there’s one AI that i) learns to do more tasks as we increase the size of our
training runs, and ii) can match human performance at some tasks with OOMs less compute
than other tasks. But this interpretation seems less natural to me.201

But then why do you talk about the “number of AGIs we could run” as if AGI was a
unified system?

201 In particular, how is AGI able to match human performance on some tasks with OOMs less compute
than others? Perhaps it does them in much less time, but the more natural explanation is that it delegates
those tasks to a smaller model, in which case we are back to having many different AIs.

https://www.amazon.com/Superintelligence-Nick-Bostrom-audiobook/dp/B00LPMFE9Y/ref=sr_1_1?gclid=Cj0KCQjwxveXBhDDARIsAI0Q0x0g4aa5EH75WtAeIXGKiVO-zSBfhHN4sYWNVCM9WsofJewUOncUVKYaAq0tEALw_wcB&hvadid=241886445826&hvdev=c&hvlocphy=9031939&hvnetw=g&hvqmt=b&hvrand=10067853902569623368&hvtargid=kwd-307944747019&hydadcr=16434_10305513&keywords=superintelligence+by+nick+bostrom&qid=1660846486&sr=8-1
https://www.fhi.ox.ac.uk/wp-content/uploads/Reframing_Superintelligence_FHI-TR-2019-1.1-1.pdf
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To calculate the number of AGIs we could run, I divide the globally available FLOP/s by the
FLOP/s required to run the AI that performs the most compute-intensive task (task with the
highest runtime compute requirements).

This calculation would be accurate if one unified system can use this amount of FLOP/s to
match human performance on any task, and can’t perform any tasks with less FLOP/s.

This calculation is conservative by the lights of the FTM, in that it underestimates the number of
remote human workers whose output we could match by running AIs. This is because
(according to the FTM) many tasks can be done with much less runtime compute than the most
compute-intensive task.

But your assumption that a massive training run will be needed to train AGI implies AGI
will be one unified system.

All that is strictly-speaking implied is that a massive training run will be needed to automate the
hardest-to-automate tasks. I expect many tasks will be performed by smaller and more
specialised AIs than this. That said, I do expect the AI trained in that massive training run to
have fairly general capabilities.

Value-weighted cognitive tasks
Throughout the report, whenever I refer to the % of cognitive tasks – or the fraction of cognitive
tasks – I am using a particular method for weighting different tasks.

Roughly and intuitively, each task is weighted by how important it is to the economy in 2020. A
task that many people perform, and are paid lots of money to perform, has more weight than a
task performed by fewer people on lower wages. More precisely, a task’s weight is proportional
to the total $ that people earn while performing the task.202

Even more precisely, a task’s weight is given by the elasticity of GDP to that task in 2020. If you
performed 1% more of that task, how much would that increase GDP? If the answer is “GDP
would increase by x%”, then the task’s weight is x. The task-based models I’m using assume
that performing 1% more of every task (both cognitive and non-cognitive tasks) would increase
GDP by 1%, so the total weight of all tasks equals 1. If economic inputs are allocated efficiently,
this definition should match the one relating to wages.203

The weights are pinned to a particular year (in my case 2020 for convenience) because the
relative economic importance of tasks changes over time. In particular, tasks that are automated
and so can be performed in higher volumes and quality tend to become less economically

203 For tasks performed by physical capital, a task’s weight should equal the total amount paid to rent
capital to perform the task.

202 For each person, this is given by the time they spend on the task multiplied by their hourly wage.
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important over time (e.g. producing food). Tasks that cannot be automated or made more
productive tend to become more important (e.g. those in healthcare and education).

This same effect happens in the Full Takeoff Model (FTM) as AI automates cognitive tasks.
Tasks that AI can perform in great quantities become less economically important – their weight
decreases – ones still performed by humans become more important. The weights change over
time, and so I pin my weights to 2020 when referring to the % of cognitive tasks.

An analogous definition of task weights applies to R&D as to the broader economy. As before,
the precise definition ties a task’s weight to how much performing more of the task would
increase R&D output (R&D output in each timestep is proportional to the rate of R&D progress
in that timestep). If performing 1% more of a task would increase R&D output by x%, the task’s
weight is x. Again, if R&D resources are allocated efficiently, this should correspond to weighting
each cognitive task by the total wages paid to people while they perform it.

Objections talking in terms of the “% of cognitive tasks”
Objection 1: We have already automated >70% of 1700 tasks? And there was no
explosion of economic growth. So why do you think this time will be different?

In economic models of automation, the growth effects of automation depend on how quickly new
tasks are automated. If you automate 90% of tasks, the models I’ve seen predict GDP/capita
should rise by >10X.204 But if this is spread out over 300 years, it might correspond to 1% growth
per year.205 So the effect would not be extremely high rates of growth. But if this was spread out
over 10 years, it would correspond to >20% growth.206 So the first key difference here is that I’m
considering much faster rates of automation than we’ve seen historically.

The second difference is that I think we could ultimately see full automation. Many growth
models predict a qualitatively different long-run outcome from this compared to mere partial
automation. With full automation, models tend to predict accelerating economic growth.207

Objection 2: Won't we introduce new types of tasks into the economy? If so, then AI that
can perform 100% of 2020 cognitive tasks won’t necessarily be able to perform the new
cognitive tasks we’ve introduced.

I think this objection has some force.

207 I discuss this point further in a previous report on whether AI could drive >30% GDP growth.
206 10 years of 20% growth is a 7X increase.
205 300 years of 1% annual growth is a 20X increase.

204 You get 10X from having all human workers concentrated on the remaining 10% of tasks, and having
enough machines to increase per-task output on the automated tasks by 10X. This increases output of all
tasks by 10X, so increases total output by 10X. You can get further gains from increasing the output of
automated tasks even further. This all assumes you’re investing enough in capital accumulation to get
enough machines to do this.

https://en.wikipedia.org/wiki/Baumol%27s_cost_disease
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth#WhyThinkAIAutomation
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One attempt to dodge is to reiterate that the FTM implies that, over time, the automated tasks
will become less important and non-automated tasks will become more important. We can claim
that the model represents the introduction of new tasks (that AI can’t perform) via the increased
importance of non-automated tasks. More precisely, the apparently new task is really just a new
application of a pre-existing non-automated task and this new application makes the
non-automated task more important (as the FTM predicts).

I like this dodge. I think it suggests that the FTM’s predictions need not go badly wrong because
of this objection. If we think many important new tasks will be introduced that AI can’t perform,
we can increase the degree to which automated tasks become less important (by decreasing
the parameter ) and keep in mind that our training requirements for AGI (AI that can performρ
~all cognitive tasks) should include any newly introduced tasks.

But I do worry that the FTM’s misleading ontology, in which the tasks needed for GDP and for
R&D are fixed over time, may introduce other issues. This objection makes me view the
abstraction of “% of cognitive tasks that AI can perform” less useful and meaningful.

Objection 3: AI will add value by enabling entirely new workflows as well as by
automating existing ones.

As with the last objection, I think it has some force but there’s a dodge that I like.

The growth model allows that, in addition to replacing humans on automated tasks, AI can have
additional economic impact by producing more output on automated tasks than humans
previously produced. If AI has economic impact by enabling new workflows, we can say the
model represents this via AI producing additional output and already-automated tasks. The
apparently new task is just a new application of a pre-existing automated task. If we think this
effect will be significant, we should increase the parameter .ρ

Objection 4: In practice it won’t be possible to actually measure what % of cognitive
tasks AI could perform.

I agree that it will be very hard to evaluate precise claims about the “% of cognitive tasks” that AI
could readily perform in each year. But it isn’t meaningless; it’s the kind of thing that economists
have tried to measure. In principle you measure it by going through the concrete cognitive tasks
that each person is in fact performing in each year (and how much they’re being paid to do it, as
implied by the time they spend and their salary), and ask the technological question of whether
AI could perform that task instead (with a limited amount of engineering work and rearranging of
workflows). Any measurement would necessarily involve many arbitrary judgment calls about
what to include, but that doesn’t render it meaningless or prevent us reaching rough
conclusions.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.njea0s86yka4
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.njea0s86yka4
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.njea0s86yka4
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet
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Even if it didn’t map to reality well at all, the “% cognitive tasks” abstraction would still be the
best way I’m aware of to model AI continuously improving from today when it (seemingly) can
readily perform <1% of economic tasks to a future world where it can perform ~all cognitive
tasks. A skeptic can just think of the framework as giving some arbitrary one-dimensional scale
on which “AI capabilities” improve between today and AGI.

Objection 5: Whether AI can or can’t perform a task depends in part on the extent to
which nearby tasks are already automated. But in your model, whether AI can perform a
task depends solely on SOTA AI capabilities (measured via the biggest training run to
date).

I agree with this. Automating one task can “unlock” a nearby task for automation by
standardising the workflow. If nearby tasks have been automated, this reduces the AI
capabilities needed to automate any given task.

My current interpretation of the Full Takeoff Model is that AI can “readily perform” a task if it can
perform it with <1 year of engineering effort and work changing workflows, and it’s profitable to
make these workflow changes. This ignores the question of “But are adjacent tasks already
automated?’

I’m not sure there’s a way to get around this without significantly complicating the model. A
better version might say that, if there’s been a few years since AI could perform 20% of tasks
then this reduces the training requirements for AI to automate 30% of tasks, since AI automating
20% of tasks will make it easier to automate further tasks. More generally, the training
requirement for performing x% of tasks fall over time once AI can perform x - e% of tasks
because we expect nearby tasks to be automated.

I think the effect of this change would be to make very fast takeoff somewhat less likely (by
raising the training requirements for AI suddenly performing 100% of tasks without any nearby
tasks being automated) and make very slow takeoff less likely (by lowering the training
requirements for eventually automating 100% of tasks via iteratively automating more and more
nearby tasks).

The truth is, though, that the evidence about training requirements for different levels of
automation is already extremely rough. It consists of first estimating the requirements for 100%
automation (perhaps via Bio Anchors), then adjusting this based on evidence about the effective
FLOP gap for lower levels of automation. My uncertainties here are already so big that this
doesn’t feel like a significant contributor.

https://www.overcomingbias.com/2019/12/automation-as-colonization-wave.html
https://www.overcomingbias.com/2019/12/automation-as-colonization-wave.html


89

How this report relates to previous thinking about takeoff speeds

Paul Christiano’s 2018 blog post
Paul Christiano argued for a slow takeoff in an influential 2018 blog post. Most of the post
counters various arguments that have been made for fast takeoff. His central argument for slow
takeoff is:

● Before we have an incredibly intelligent AI, we will probably have a slightly worse AI.
● A slightly-worse-than-incredibly-intelligent AI would radically transform the world, leading

to growth (almost) as fast and military capabilities (almost) as great as an incredibly
intelligent AI.

I agree with this argument, but I think its conclusion is that takeoff will be continuous rather than
that takeoff should be slow.

The argument precludes a discontinuous jump in capabilities or impact, because some
slightly-worse AI would have caused an intermediate level of impact first. This I agree with
(though I assign some probability to discontinuous jumps in capability nonetheless).

But the argument doesn’t preclude AI capabilities and impacts increasing continuously but
extremely rapidly. It doesn’t speak to whether the slightly-worse AI will occur 1 year vs 1 second
before the slightly-better AI. And this can make a big difference to takeoff speed. If AI
capabilities improve continuously but go from today’s capabilities to AGI in one month, then it
seems possible that we go straight from world GDP doubling in 24 years to it doubling in 1 year,
which is a very fast takeoff by Paul’s definition. And the GDP trajectory underlying this could
also be entirely continuous.

The framework of this report is (an example of) one in which AI progress is assumed to be
continuous but this can still give rise to fast takeoff if the rate of continuous AI improvement is
sufficiently fast. More concretely, AI capabilities improve continuously as you cross the effective
FLOP gap, but if you cross that gap sufficiently quickly then takeoff is fast.

Paul predicts that takeoff will be slow enough that there’s a full 4-year doubling of world GDP
before the start of a 1-year doubling (and a full 8-year doubling before a 2-year doubling, etc).
The Monte Carlo analyses calculate the probability that this is the case:

Median AGI training
requirements in simulation
(FLOP using 2020
algorithms)

Probability of a full 4-year
doubling of world GDP finishing
before a 1-year doubling begins

Probability of a full 8-year
doubling of world GDP
finishing before a 2-year
doubling begins

~1e31 49% 32%

~1e36 74% 47%

https://sideways-view.com/2018/02/24/takeoff-speeds/
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
https://takeoffspeeds.com/reports.html#mc_analysis
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In a nutshell, then, my reply is: Yes takeoff will probably be mostly continuous, but it could still
be fast.

Eliezer Yudkowsky’s Intelligence Explosion Microeconomics
These are my opinions, and Eliezer might disagree with my characterisation of his thinking.

Intelligence explosion microeconomics doesn’t argue for takeoff happening in weeks
rather than in years.
My impression is that Eliezer Yudkowsky expects takeoff to be very fast, happening in time
scales of days or months. By contrast, this framework puts the bulk of its probability on takeoff
taking multiple years.

Does Eliezer give arguments for a transition taking weeks or months, rather than years?
Intelligence Explosion Microeconomics (IEM), Eliezer’s most detailed piece on this topic, gives
various qualitative arguments for thinking that an intelligence explosion would not fizzle out but
instead involve intelligence growing super-exponentially. There are also arguments for thinking
AI will only need to outcompete the very small fraction of humans who do AI software R&D,
rather than outcompeting the whole world, for them to kickstart an intelligence explosion. But
these arguments don’t (attempt to) quantify either the length of the transition to AGI or the
pattern of software progress during and after the transition. So they don’t speak to whether we
should expect the transition to take days vs years; and thus to whether the accelerating AI
progress will take the form of a slow takeoff vs a fast takeoff. Therefore I view those arguments
as all wholly compatible with the full range of scenarios sketched in this report from 1 year
takeoff to 30 year takeoff.

For example, Eliezer argues that the comparison of chimps and humans suggests that returns
to improving the algorithms for general intelligence are very favourable in the human range. This
can be interpreted as claiming that the returns to software R&D, which I quantify with r, will be
favourable around human-level AI. But the argument doesn’t (attempt to) quantify i) how good
these returns are, or ii) the time it will take AI to transition from “comparably useful to software
R&D as today’s AIs” to “fully automates software R&D”, or iii) the rate of software progress
during and after this transition. Nor is there any attempt to make a bounding argument - to argue
that any takeoff respecting these constraints must be extremely fast. Without this, the argument
doesn’t support takeoff happening in days vs years.

Perhaps the closest thing in IEM is the analogy to uranium. To simplify, when the density of
uranium is below a critical threshold, no chain fission reaction occurs. But once it rises even a
tiny bit above that threshold, the chain reaction quickly explodes.208 If AI follows an analogous
trajectory then the transition from “AI can’t really help with software R&D” to “AI recursively
self-improves, doubling its own abilities every few hours” would be very quick indeed. While I
find the analogy suggestive of the logical possibility of a very quick transition, I think more work

208 The threshold was k = 1. When k = 1.0006, the neutron level doubled every 2 minutes.

https://intelligence.org/files/IEM.pdf
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is needed to show that this is plausible or probable in the case of AI. (I’d be excited about
someone doing this work, teasing apart why the transition is so sudden in the case of uranium
and what analogous assumptions would need to hold in AI for a comparably quick transition.)

I think of this report as providing a quantitative framework for Intelligence Explosion
Microeconomics
IEM qualitatively discusses a number of factors:

● Moore’s law would go faster if humans ran on computer chips.
● The importance of algorithmic improvements to AI progress.
● The (large) returns to higher quality intelligence

As I said above, he doesn’t use these factors to predict takeoff speed, or even to bound takeoff
speed (e.g. he doesn’t argue takeoff must take less than 1 year to be consistent with this
evidence).

This report quantities these factors, wherever possible using relevant empirical data:
● Moore’s law would go faster if humans ran on computer chips.

○ Data on the returns to hardware R&D.
○ An economic model where AI increasingly automates the cognitive work of

hardware R&D.
● The importance of algorithmic improvements to AI progress.

○ Data on returns to software R&D.
○ An economic model where AI increasingly automates the cognitive work of

hardware R&D.
● The (large) returns to higher quality intelligence

○ Correlations between brain size, IQ and output.
○ Data from ML on how much less thinking time models with “bigger brains”

need to achieve the same performance.
● The report also incorporates the fact that AI might have strong comparative on some

tasks over others, which tends to slow down takeoff speed.

So I think of the report as providing a quantitative framework to think about the factors that are
discussed qualitatively in IEM.

Other arguments for discontinuous AI progress around AGI

I put ~6% on a substantial discontinuity in AI progress around the human range
I agree that takeoff could happen in mere days if there is a transition in days from “AI that can
perform <20% of cognitive tasks in today’s software R&D” to “AI that fully automates software
R&D” and there are no compute bottlenecks to a software-only singularity. In this case, the pace
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of software progress could jump from its current pace (doubling every few years) to a 1000X
faster pace (doubling in hours).209

I put low probability on such a large discontinuous jump occuring, for familiar reasons. In
particular

1. Such large discontinuous jumps are rare in technological progress in general, rare in
software progress and rare in AI,210

2. Large discontinuities seem more plausible in narrow areas than in broad areas and
achieving general intelligence seems like a very broad area (though there’s more room
for doubt about how broad the skills for software R&D are).

3. It seems to me the rebuttals211 of specific arguments for why there might be
discontinuities around AGI are strong, and no good responses have been given 4 years
on.

That said, I do think that small jumps in AI capabilities are likely to occur, and that we should
attach some probability to substantial discontinuous jumps in AI capabilities.212 How much
probability would I assign to a large jump or kink in capabilities around AGI? Based on a rough
outside view argument, I’d maybe assign ~6%?

● AI impacts looked at 38 trends, 20 of which had substantial discontinuities, ~50%
● They went looking for discontinuities though, so i'd put this probability 4X lower, ~12%.
● But the generality of AGI and the continuity of recent AI progress provides some reason

to think big jumps are less likely. And even if there is a big jump, there’s no particular
reason for it to happen just before AGI. So I’ll lower this another 4X: ~3%.

● I update up to ~6% based on an argument from Nate Soares about the chimp-human
transition.

This has not been the main focus of my work, which was exploring the implications of a
compute-centric approach that doesn’t have substantial discontinuities (beyond those implied by
a small effective FLOP gap).

212 By “ substantial discontinuous jump” I mean “>10 years of progress at previous rates occurred on one
occasion”.

211 See Paul Christiano’s blog post and AI Impact’s page.

210 Though progress can be somewhat discontinuous in particular narrow applications of AI like Go,
progress in entire domains (like games) is more continuous and progress in the field as a whole is even
more continuous.

209 Let’s assume software currently takes ~2 years to double with ~20,000 high quality software workers.
After developing AGI that’s equally good at software development as a high quality software worker, it
may be possible to run ~10 million such AGIs. (This depends on the AGI runtime requirements.) This
implies the first post-AGI software doubling could happen 10 million / 10,000 = 1000X more quickly than a
current software doubling. So it could happen in < 1 day. If a software only singularity is possible,
subsequent software doublings would be faster than this so that within a few days very many doublings
have occurred: an ‘intelligence explosion’. I model out this scenario here.

https://aiimpacts.org/discontinuous-progress-investigation/
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.apdvo0uwo5qe
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.apdvo0uwo5qe
https://sideways-view.com/2018/02/24/takeoff-speeds/
https://aiimpacts.org/likelihood-of-discontinuous-progress-around-the-development-of-agi/
https://docs.google.com/spreadsheets/d/1Kls2l0WGlcQ1VQ0DBIxBrNvwzuvD9nFVxMctfhO3Ekw/edit#gid=0
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Takeoff speed can differ in different domains
Suppose it takes 1 month to go from today’s AI capabilities to a disembodied AGI, but it then
takes decades for this to affect GDP due to various bottlenecks. Is takeoff fast or slow? If you
measure AI capabilities by the ability to perform cognitive tasks that a human worker could
perform remotely, takeoff was very fast. But if you measure AI capabilities by their impact on the
economy, takeoff was slow.

Or suppose that overnight we develop AI that massively increases military power, giving its
controller a decisive strategic advantage, but this AI doesn’t accelerate technological progress.
In one relevant strategic sense takeoff is fast, but in another it is slow.

In cases like these, it can be useful to talk about takeoff speed in domain X. The question of
takeoff speed becomes: How long will it take to go from “AI has a minor impact on X” to “AI is
making X go through the roof”. Here are some example domains:

● Cognitive output. Annual output on tasks that a human worker could do remotely. E.g.
software development, math, strategy, knowledge work, writing.

● SOTA technological progress. The speed at which we’re developing new technologies
(distinct from how quickly they are integrated into the global economy).

● Military power. Ability to win a hot war.
● GDP. GDP as measured by the incomes and consumption of fleshy humans.
● AI-inclusive GDP. GDP as measured by the incomes and consumption of fleshy

humans and digital agents (including human uploads and AIs).

We care about different domains for somewhat different reasons, and fast takeoff is more
plausible in some domains than others.

Conditions under which simple growth models predict fast takeoff
in GDP
Let’s first take a simple case where we’re not modelling technology or TFP.

In standard growth models output Y (which represents GDP) is a function of capital K and
labour L. The equation is:
Y = g(K, L)

Capital cannot replace labour in these models. There are diminishing returns to capital which
makes it hard to get a large output by building more capital alone. An extreme but simple way to
model this is:
Y = min(K, L)

These models can represent full automation from AI via capital being able to replace labour in
production. After the transition to full automation there aren’t diminishing returns to capital. If you
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can amass enough capital, output can become very high. To increase output significantly you’ll
need enough capital to replace all the labour many times over. One simple way to model this is:
Y = K + L

There are a few ways to model a continuous transition here. You can model the economy as
containing many tasks, and have capital perform and continuously increasing fraction of them.
(This is my approach in this report.) Or you can model the elasticity of substitution between
capital and labour (as in a CES production function); it starts <1 (so that capital and labour are
complements) and continuously increases until it approaches infinity (so that capital and labour
are perfectly sustitutable).

Fast takeoff means that the growth rate of Y increases very suddenly during the and
immediately after transition (see earlier discussion). This will only happen if both:

1. The transition happens very quickly.
○ Output can only become very high once that transition has occurred and capital

can replace the limited supply of labour. If the transition is gradual then the gain
in Y will be spread out over time.

2. Shortly after the transition there is lots of capital, including enough to replace labour
many times over.

○ Even after the transition, output won’t become significantly higher unless there is
enough capital to replace labour many times over. (If one type of capital replaces
labour (e.g. AI robots) and another doesn’t (e.g. trucks) then there must also be
lots of both types of capital, as there are diminishing returns to each type.)

If both these conditions hold then you quickly transition from a world where capital can’t replace
labour to a world where it can and there’s enough capital to replace it many times over. After the
transition, the inputs to production are many times higher than before the transition.

Growth models would predict that Y increases extremely rapidly during such a transition,
implying a very rapid increase in the growth of Y. The simple example equations I gave clearly
imply that if conditions 1 and 2 hold, there will be a very rapid increase in the growth of Y.

What about technology? Well, the best models of technological progress are similar to the
model of output I’ve been discussing. You simply replace Y with dA/dt, the rate of technological
progress (you also model diminishing returns, but we can set that aside). So you’ll get a sudden
and dramatic increase in the rate of technological progress if conditions 1 and 2 hold for the
tasks involved in technological progress.  So this doesn’t really change the analysis.

How does this all relate to the broader report? The historically fast growth of both computer
hardware and software give reason to think conditions 1 and 2 could hold for cognitive tasks.

● Condition 1 (fast transition) holds if we rapidly cross the effective FLOP gap, achieving
100% automation of cognitive tasks. Fast growth of hardware and software (i.e. of
FLOP/$ and 2020-FLOP per FLOP) allow us to cross the effective FLOP gap quickly.

https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
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● Condition 2 (enough capital to replace humans many times over) holds if there’s enough
computer capital to replace human cognitive labour many times over shortly after the
transition. Fast growth of hardware and software allow us to quickly increase the
numbers of AGIs we can run after crossing the effective FLOP gap.

○ In fact, condition 2 nearly always holds in my framework because either i) by the
time we have enough FLOP to train AGI we already have enough to run 10s of
billions of AGIs, or ii) around when we develop AGI the amount of 2020-FLOP is
increasing extremely rapidly due to AI automation of hardware and software
R&D.

■ For factor (i) it’s essential that compute can be easily reassigned from one
purpose to another. After inventing AGI we won’t need to print new
specialised AGI chips to run the new AGI algorithms.

○ So the main determinant of whether there’s fast takeoff of GDP is normally
condition 1.

This gives an interesting perspective on why hard takeoff in GDP can happen in this framework.
It’s because it allows for the possibility of a rapid transition to a world in which computer capital
can replace human cognitive labour and there is very soon enough computer capital to replace
human cognitive labour many times over.

If I had captured this dynamic with a different sort of growth model, I would have got a
comparable result. E.g. if instead of a task-based model, I could have used a standard CES
growth model with 3 inputs: human labour, computer capital, and physical capital. Rather than
the ‘transition’ corresponding to AI performing a greater fraction of tasks, it would correspond to
increasing substitutability between human labour and computer capital. I’d peg this
substitutability to the biggest training run that has occurred. The overall result would be the
same: the possibility of a fast transition to a world where AI can completely replace human
cognitive labour.

This also gives an interesting perspective on a key bottleneck of the report: physical capital.
While the quantity of computer capital has grown extremely rapidly in recent decades, this is
unusual. The quantity of physical capital generally grows much more slowly. This means that it
could prevent Y from becoming extremely large, even if there’s enough computer capital to
replace human cognitive labour many times over.

Why a fast takeoff probably has its origins in the transition to AGI
rather than purely in the aftermath of AGI
I’ll analyse a simple toy model of growth dynamics in the aftermath of AGI. This toy model
suggests that the internal dynamics of the aftermath themselves won’t by themselves lead to a
fast takeoff. But it also suggests that if the transition to AGI was sufficiently quick, there would
be a fast takeoff.
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Here’s the toy model. We’ve developed AGI, and can run a certain number of AGIs. Let’s say
that, initially, the AGIs’ total cognitive output equals 10. For now, let’s say the only way to
increase their cognitive output is via software R&D to improve the AGI algorithms (i.e. recursive
self-improvement).

After a certain amount of time, the AGIs will have doubled their own cognitive output to 20. Let’s
call this amount of time D1. D1 is the duration of the first doubling of cognitive output after AGI.
(“D” for “Doubling time”.)

After some additional amount of time, the AGIs will have doubled their cognitive output a second
time to 40. Let’s call this additional amount of time D2. D2 is the duration of the second doubling
of cognitive output after AGI.

And similarly, D3 is the duration of the third doubling of cognitive output, and D4 the duration of
the fourth. More generally, Dn is the duration of the nth doubling of cognitive output after AGI.

The key question for takeoff speeds is: what is the ratio between Dn and Dn+1? That is, what is
the ratio between successive doubling times? If the ratio is very large, e.g. Dn = 10Dn+1, then
there is a fast takeoff. We go very quickly from AI self-improving at a moderate rate to it
self-improving 10X faster. But if the ratio is relatively small, e.g. Dn = 2Dn+1, then takeoff is slow.
We move gradually from AI self-improving at a moderate rate to it self-improving at a slightly
faster rate.

This metric of takeoff speeds mirrors Paul’s definition in terms of GDP doubling times, except
that we’re replacing “GDP” with “cognitive output”.

Ok then, what is the ratio between Dn and Dn+1? In this toy model, there’s good reason to think
the ratio is <2. In particular, if there’s any diminishing returns whatsoever to increasing
cognitive output, the ratio is <2.

Let’s compare D2 and D1. At the start of the second doubling, cognitive output is 2X higher than
at the start of the first doubling. (By the definition of a “doubling of cognitive output”.) If the
amount of cumulative cognitive output needed to achieve the second doubling exactly equalled
that needed to achieve the first doubling, the second doubling would take half the time. With
twice the cognitive output (per second), it takes half as long to do a fixed quantity of work. So if
(work needed for first cognitive doubling) = (work needed for second cognitive doubling), then
D1 = 2D2.
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But in fact diminishing returns are fairly ubiquitous.213 It will probably take more absolute effort to
double output the second time than it did the first time. The lowest hanging fruit, the biggest
improvements that are easiest to find, will have already been taken. This implies that the second
doubling will take more than half as long as the first doubling. So if (work needed for first
cognitive doubling) < (work needed for second cognitive doubling), then D1 < 2D2. The ratio
between successive doubling times is <2.214

So, at least in this toy model, it seems like takeoff will be slow in the aftermath of AGI. The rate
of recursive self-improvement will increase gradually with each doubling of cognitive output,
rather than suddenly.

But this still leaves open the question of how the rate of AI improvement in the aftermath of AGI
compares to the rate of improvement before AGI. If D1 = 1 week (AI cognitive output doubles in
a week immediately after AGI) but the doubling in cognitive output just before AGI took one
year, then the ratio between successive doubling times on either side of AGI would equal 52!
The argument above still leaves open the possibility of a very fast takeoff during the transition
to, and immediate aftermath of, AGI.

This explains why I believe that a fast takeoff is unlikely to arise purely from the internal
dynamics of a post-AGI world, but could easily arise from a rapid transition to AGI.

There are considerations omitted from the toy model which could lead to a fast takeoff dynamic
occurring purely from the internal dynamics of a post-AGI world. If the fraction of the world’s
compute used to run AIs working to improve AI algorithms increases very rapidly in the
immediate aftermath of AGI, then the ratios between successive doublings could be larger. For
example, if twice as much compute is used for each successive doubling, then that could double
the ratio. Or, similarly, if the data AGIs can access increases very rapidly between doublings,
this could also increase the ratio between successive doublings. More generally, the pattern is
that there’s some input to AI development (compute, data, something else) that grows very
rapidly in the immediate aftermath of AGI.

I think though, that this kind of dynamic is likely to only be significant if there is a rapid transition
to AGI. If the transition lasts many decades, it seems likely that we’ll already be using AIs to
improve AI algorithms and already be leveraging all the data we can to train our AIs. In this
scenario, I wouldn’t expect very significant gains to be left on the table from reallocating the
world’s inputs just after we cross the threshold for AGI. If so, it would raise the question: why
expect those inputs to be reallocated just after AGI but not before?

214 This is just a bound. I make my best guess about what happens in this scenario when I assess
whether a software only singularity might occur.

213 Are Ideas Getting Harder to Find finds diminishing returns in the economy as a whole and many
particular areas of it. See also this blog post by Matt Clancy examining the empirical evidence. To my
mind, there are also strong a priori reasons to expect diminishing returns. If some improvements are
harder to discover than others, then most simple models will exhibit diminishing returns as the
easier-to-discover improvements are found earlier on.

https://web.stanford.edu/~chadj/IdeaPF.pdf
https://mattsclancy.substack.com/p/innovation-gets-mostly-harder
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These arguments are not conclusive. But they do lead me to expect that, conditional on a fast
takeoff, the fast takeoff probably doesn’t arise purely from the internal dynamics of a post-AGI
but also relies on a fairly quick transition to AGI.

How likely is a software-only singularity?
Suppose you have a fixed amount of hardware that's capable of doing a particular number of
physical FLOP/s.215 You use this hardware to run AGIs (one or more AIs that collectively
automate all cognitive labour) that do software R&D. In particular, they try to improve the
algorithms that the AGIs are running on.

In this scenario, how would the total cognitive output216 of the AGIs change over time?

In section 5 I said this depended on i) how long it takes to double the AGIs’ cognitive output the
first time, ii) how the doubling time for cognitive output changes over time.

This appendix discusses (ii), in particular whether there will be a software-only singularity with
doublings becoming quicker over time and, if so, how long this might last before doublings
become slower over time.

While current returns to software R&D suggest a software-only singularity would happen
comfortably, returns may become worse as we approach AGI and being limited to a fixed
amount of physical FLOP/s could bottleneck software progress in a couple of ways.

Overall, I’m roughly ~65% on a software-only singularity occurring, and my median best guess
is that it would last for ~2-3 OOMs if it happened. What would 2.5 OOMs of a software
singularity mean? My unit of software in this section is "useful cognitive output per FLOP". So
2.5 OOMs means you can 300X the rate of progress on software development, persuasion, and
any other cognitive task. One way to imagine this is that it’s as if the software improvements
allowed all your AGIs to think 300X more quickly; though in fact the progress will come from a
combination of “you can run more AIs in parallel” and "AIs can think in new and qualitatively
better ways". (And I expect some of the progress to allow AI to do entirely new things that they
previously couldn’t have done even with ~arbitrarily long to think.)

216 By this I mean their ability to make progress on software R&D and their output in other cognitive
domains like maths, strategy, persuasion, etc. My preferred unit for cognitive output is “How many remote
human workers would it take to add the same amount of value?” So if the AGIs make some software
progress in one month, and you’d have needed 1000 human workers to make the same amount of
progress in one month, then the AGIs’ cognitive output is “1000 remote human worker equivalents”. More.

215 In practice, I expect physical FLOP to be growing very rapidly during any period where there might be
a software only singularity. However, the simplification of imagining that physical FLOP is constant is still
useful. This is because it can tell us about whether software (2020-FLOP per FLOP) might grow much
much faster than physical FLOP during this time. If it does so, then physical FLOP will be roughly
constant on timescales over which software grows very significantly. So the question “Would there be a
software singularity?” maps to the question “Would software grow much much faster than physical
FLOP?”.
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Note, even without a software singularity I expect software progress to become extremely fast
by the time we have AGI.

In the rest of this section I:
● Recap the mathematical condition under which a software only singularity occurs.
● Distinguish between pure efficiency improvements and capability improvements.
● Argue that a singularity via only efficiency improvements seems plausible, ~50%.
● Argue that including capability improvements makes it significantly more plausible,

~85%.
● Suggest potential bottlenecks do not rule out a software only singularity but do make it

less plausible, leaving me on ~65%.

Recap: the mathematical condition for a singularity
Whether there is a software singularity depends on the returns to software R&D. These returns
can be quantified by the parameter r. The meaning of r is: each time cumulative software inputs
double, 2020-FLOP per FLOP doubles r times. During a (potential) software only singularity
these inputs are provided by AGIs and they only increase due to the AGI’s improved software.

As discussed above, the mathematical condition for a software-only singularity is r > 1. Each
doubling of cumulative cognitive R&D inputs must more than double 2020-FLOP per FLOP.

Two types of software improvements
One type of software improvement that AGIs might make is simply to make the algorithms on
which they’re running more efficient. The same level of intelligence is then produced with fewer
physical FLOP/s. An example of this type of improvement would be pruning, where some of the
connections in a dense neural network are removed (‘pruned’) but the performance of the
system is (mostly) maintained.

This contrasts with the second type of improvement, which increases the capabilities of the
AGIs. A greater level of intelligence is produced, perhaps with the same or more physical
FLOP/s. For example, GPT-3 performs much better at a range of language modelling tasks than
GPT-2.

If AGIs are trying to achieve a software only singularity, they will be able to make both kinds of
improvement. They will presumably work on both improvements in (roughly) whichever
combination best improves software.

I will first assess whether a software only singularity could be achieved by the 1st type of
improvement alone, and then discuss the effects of the second type of change.
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An efficiency only singularity
We are restricting ourselves only to efficiency software improvements, i.e. ones that decrease
the physical FLOP/s to achieve a given capability. With this restriction, the mathematical
condition for a singularity here is the same as before: each doubling of cumulative inputs must
more than double the efficiency of AI algorithms. If this holds, then the efficiency of running AGIs
(of fixed ability) will double faster and faster over time. Let’s called this an “efficiency only
singularity”, which is of course an example of a software only singularity.

Estimating r from ‘AI and efficiency’
What data do we have on this? Recall that to estimate r we need data on cumulative inputs and
on output.

Let’s start with outputs. AI and efficiency, an OpenAI blog, looks at how the runtime FLOP/s
needed to achieve a given level of performance on ImageNet has changed over time. They
observe an 18X decrease from 2012 - 2017. This corresponds to an efficiency doubling time of
15 months and an efficiency growth rate of 55%.

What about inputs? Tamay Besiroglu’s dissertation suggests that the number of computer vision
researchers grew at 19% over the same period.217 If the cumulative research effort on ImageNet
grew at the same pace, that implies that that r = 2.9.218 (Recall, this means that each doubling of
cumulative R&D inputs doubles runtime efficiency 2.9 times.)

My impression is that similar rates of software improvement have been achieved in other
domains of ML, with efficiency doublings happening every 1 - 2 years.219 But gathering more
data points on this would be a very tractable and useful exercise.

If the value of r when we first get AGI is similar to this estimate, then there would comfortably be
an efficiency-only singularity. However, there are a few reasons to think that r will be smaller
than this.

1. ImageNet inputs rose more quickly than 19%. I don’t have data on the amount of
research done specifically on ImageNet. It’s plausible that it rose faster than the number
of computer vision researchers overall after 2012 did. ImageNet rose in prominence, as
did approaches to it that used large amounts of compute. On the other hand, the growth
of quality-adjusted researchers is probably slower than the growth of researchers if many
new researchers entered the field.220 In addition, even if annual research inputs rose

220 This is the relevant comparison, because any efficiency gains will allow us to run more AGIs of a fixed
quality.

219 For example, table 2 of OpenAI’s paper shows similar or faster software gains on other select tasks as
on ImageNet (though this is for training compute, not runtime).

218 55/19 = 2.9.
217 Calcs.

https://openai.com/blog/ai-and-efficiency/
https://static1.squarespace.com/static/5fb98ea9a787c521ab066091/t/5fba5c3ddb275d51d91825eb/1606048834827/AreModels.pdf
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=10
https://docs.google.com/spreadsheets/d/1qmiomnNLpjcWSaeT54KC1PH1hfi_jUFIkWszxJGVU5w/edit#gid=0
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faster than 19%, cumulative inputs would have risen more slowly than annual inputs.221

Let’s say that quality-adjusted cumulative ImageNet inputs actually grew at a rate of
25%; this still implies r = 2.2.222

2. There was low hanging fruit to improve ImageNet in 2012 as algorithms were
using more physical FLOP than previously.223 If you suddenly have access to much
more physical FLOP/s than previously, new algorithms will become available224 and
people won’t previously have been able to pluck the low-hanging improvements to
improving them. This seems correct, but I don’t think it suggests we should use a lower
value of r.

a. Firstly, the model I’m using already incorporates low-hanging fruit. Each
efficiency doubling is harder to achieve than the last. (Indeed, the FTM normally
predicts that the first post-AGI software doubling will take >~100X effort as a
software doubling takes today, though this depends on the parameter choices.)
So it is consistent with the observation that efficiency improvements were easy in
2012 and have become harder since. The objector here would have to further
claim that the value of r itself, which controls the rate of diminishing returns,
should decrease over time.

b. Secondly, AGI will plausibly be in an analogous situation to ImageNet. More
physical FLOP will be used to train AGI, and more physical FLOP/s to run it, than
with previous systems. So you’d expect there to be low-hanging fruit here for the
same reasons as with ImageNet.225

3. Minimal efforts made to make vision algorithms compute-efficient before 2012.
Before 2012, computer vision algorithms used much less compute. In particular,
compute was a small fraction of the total costs of a project, much smaller than human
labour. So there was minimal incentive to optimise algorithms for compute-efficiency. But
after 2012, the cost of compute for projects rose very rapidly, increasing the financial
incentives to make computer vision algorithms efficient. So there may have been one

225 In fact, this gets at an important way in which my model may underestimate the speed of software
progress around AGI. It implies that the first software doubling after AGI will take much more effort than
the first such doubling after ImageNet 2012, because of algorithmic progress inbetween pushing us
further out the curve of diminishing returns. (~100X more effort, depending on what much software inputs
increase before AGI.) But if each new OOM of physical FLOP “resets” the low-hanging fruit, then the first
software doubling in each case may require equal effort. This would mean that the initial post-AGI
software doublings would happen much faster than I’m predicting, and even if r<1 there would be many
very rapid doublings of software.

224 Here’s a toy example of how this might happen. To train algorithm 1 on D data points requires physical
FLOP of 10*D^1.2. To train algorithm 2 on D data points requires physical FLOP of 1000*D^0.8. The
second algorithm only becomes more efficient than the first once you are using a sufficiently large number
of data points. It scales better with data but has a larger up-front cost, so only becomes ‘available’ when
we are using enough physical FLOP to process lots of data points.

223 In particular, I believe AlexNet, the system that famously won the competition in 2012, used
significantly more training and runtime compute than had historically been used.

222 55% / 25% = 2.2.

221 ImageNet had been going since 2010, and its predecessor since 2005 (source). Earlier work on
computer vision also contributed to the stock of relevant cumulative inputs. So there would have been a
notable stock of cumulative inputs in 2012. If the growth rate of annual inputs increased in 2012 then, it
turns out mathematically, the growth rate of cumulative inputs is initially lower than this and catches up
only after a few years.

https://en.wikipedia.org/wiki/ImageNet#History_of_the_ImageNet_challenge
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time gains from transitioning from a “we don’t care about efficiency” to a “we do care
about efficiency” regime that will not be repeated again. If we ignored these one-time
gains, our estimate of r would have been lower.

I think this point has some merit, but it doesn’t seem to justify a much lower value of r.
There are often “one-time gains” that drive progress, and my model of software progress
is really just aggregating together many such one-time gains. And, to repeat, the model
incorporates diminishing returns and so it expects the one-time gains to become smaller
and less common over time. And there will plausibly be comparable “one time gains” in
the future: as researchers spend $1 millions and much more on training runs, the
financial incentives to make AI algorithms more efficient will grow significantly. The
question is whether the transition from pre-2012 to post-2012 is part of a series of
one-time gains that we should include in the model as part of a pattern of diminishing
returns that will continue into the future, or whether they constitute an outlier from that
pattern.226 I currently lean towards the former. This is influenced i) by a suspicion that,
even before 2012, algorithm designers in computer vision were at least somewhat
concerned with efficiency, and ii) by a sense that similar rates of software progress have
happened in other ML domains until the current day (2022).

If I discount 25% of the observed efficiency gains as due to a one-off effect that should
be treated as an outlier, then my estimate drops from r = 2.2 to r = 1.7.227

4. r will fall as we approach ultimate limits of software efficiency, and will be lower by
the time we get to AGI. There is some ultimate limit to how efficient software can
become; e.g. you can’t run AGI on 10 FLOP/s. Once we reach this limit, further progress
is impossible. This corresponds to r = 0.228 So r falls towards 0 as we approach ultimate
limits, and may have fallen somewhat by the time we get to AGI.229

The longer your AI timelines, the stronger this argument as there is more time for
software to approach ultimate limits before AGI.

This seems broadly correct to me, and I expect r will be lower when we get AGI than
today. I don’t expect this effect to be huge because I don’t think we’ll have reached
ultimate limits by the time we get to AGI (more). In addition, AGI will probably be trained
using more physical FLOP and run using more physical FLOP/s than previous systems.
So it seems unlikely that the first AGIs will be maximally efficient, given our lack of

229 An important question is whether r falls based on our linear distance from the limit, or our log-distance
from it. If the former, then only in the last OOM of software improvement will r fall to 0 and r probably won’t
change much before AGI. If the later, then r will fall somewhat during each software doubling along the
way and r may decrease significantly before AGI.

228 Each doubling of cumulative inputs causes 0 doublings in efficiency.
227 2.2 * 0.75 = 1.65.

226 One way to settle this is empirical. Look at whether rates of software progress were significantly higher
just after 2012 than in periods since; if so it suggests the transition was an exception. Another way is
speaking to practitioners in the field about whether they feel there is a continued pattern of this kind, or
whether there was a regime change around 2012 that will never be repeated.
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experience optimising systems with that level of compute.230 I think we’ll have made 2 - 3
OOMs progress, with more than this still remaining before reaching ultimate limits.

My guess would be that r falls ⅓ of the way towards 0 by the time we get AGI; so my
estimate drops from r = 1.7 to r = 1.1.231 I think people could reasonably expect r to fall
½ or even ⅔ of the way towards 0, which would imply r < 1.

After considering those 4 objections, my best guess for r fell from 2.9 to ~1. This matches my
gut feeling that, once we have AGI, returns will be worse than the naive ImageNet data suggest,
but not way way worse, and that means there could well be an efficiency only singularity. I’m
about 50 -50 on whether r > 1 at this point. (Later, I’ll discuss how many software doublings a
singularity might last for, if it happens.)

Estimating r from Computational Limits of Deep learning
Thompson et al. (2022) find that “3 years of algorithm improvement is equivalent to an increase
in computing power of 10X” in image models. This corresponds to a growth rate of 77%. The
paper does not estimate growth of inputs, but using the 19% from above implies r = 4. This is
higher than the equivalent r = 2.9 we estimated previously. Applying the same penalties as in
the last section would leave us on r = 1.5.

Estimating r from ‘How Fast do Algorithms Improve’
How Fast do Algorithms Improve, by Sherry and Thompson, is another source of data on
efficiency improvements. They survey a wide range of algorithms, most of which are not specific
to machine learning, and calculate the annual rate of efficiency improvement. The rate of
improvement depends on the size of the problem - how many examples or data points must be
processed. They find that, at a problem size of n = 1 billion, the efficiency of the median
algorithm had a growth rate of 25%.232

To estimate r, we also need data on software investments across this period. A couple of data
sources imply software investment, measured in real $, grew at a rate of 6 - 14% during this
period. Let’s say the number of quality adjusted researchers had a growth rate of 10%.233 That
implies r = 2.5.

233 This is probably slightly too high, as it looks like real $ grew at ~10% and so quality adjusted people
probably grew ~2% more slowly (due to rising real salaries). As a result, the estimate of r will be slightly
too low.

232 They say “28% per year” on p.5, which corresponds to a growth rate of 25%: e^0.25 = 1.28.
231 1.65 * 2/3 = 1.1.

230 Although if you think that AGI will consist of multiple interacting AIs, we may have already trained most
of those AIs before training the final AI that allows the AIs to collectively perform all tasks. (OTHO, the
tasks performed by the final AI could well be the main bottleneck, so that final AI’s capacity for
improvement may be most relevant.)

https://arxiv.org/pdf/2007.05558.pdf
https://ide.mit.edu/wp-content/uploads/2021/09/How_Fast_Do_Algorithms_Improve.pdf
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=233523958
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=233523958
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This methodology avoids objections 1, 2 and 3 from above, as these were specific to the
ImageNet data being used. Objection 4, that returns may be worse once we get to AGI, still
applies. The same ⅓ adjustment as before leaves us at r = 1.6.

There are a couple of big uncertainties here.

Firstly, Sherry and Thompson observe very large disparities on progress in different types of
algorithms.234 If we have similar uncertainty about AGI we should be open to an efficiency-only
singularity happening comfortably, or to it not happening at all.

Secondly, the result is sensitive to the problem size used. A problem size of 1 million, rather
than 1 billion, reduces the median rate of progress from 25% to 14%,235 which would leave us at
r = 0.9.236 I don’t know a principled way to choose the problem size. I think using the size of
current SOTA AI models (e.g. # params or # data points) would imply a somewhat higher
problem size than 1 billion. The problem size will be larger still for AGI.237

I see this second estimate as broadly consistent with the first; both suggest r = ~1 is plausible
for efficiency improvements around AGI. I find the second estimate slightly less informative
because it looks at algorithms in general rather than focussing on AI.

In both cases, my biggest uncertainty is how much r will decrease between today and when we
get AGI. It seems fairly clear that today r > 1 by some margin, but that could easily stop being
the case by the time we get to AGI.

A software-only singularity (including capability improvements)
The above analysis assumed we were restricted to only using software improvements that
increase the efficiency of running systems with ~fixed capabilities. I guessed there was a ~50%
chance these improvements would happen increasingly quickly; and if so, that might be ~10X
total improvement before progress began to slow.

In reality, AGIs would also try to make improvements to make more capable AI, perhaps running
on as much or more FLOP/s. This could only increase the chance of a software-only singularity
occurring and its duration.

How large might this effect be? I think there are good reasons to think the effect will be big:
● New capabilities are plausibly a much bigger source of progress than efficiency

improvements on existing capabilities.

237 This gives another reason to think there won’t be extremely harsh diminishing returns at this time
(larger problem sizes lend themselves to faster algorithmic improvements, measured in % terms).

236 1.6 * 14%/25% = 0.9.
235 e^0.14 = 1.15.

234 They say (p.4) that just under half the families show little to no improvement, while 14% of algorithms
improved by more than 11X each year (on average).
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○ OpenAI argue238 for this. For example, they suggest that AlexNet – the system
that famously won ImageNet in 2012 – achieved its level of performance much
more efficiently than pre-existing algorithms could have. More generally, they
argue that the first time a capability is achieved, the algorithm used is typically
much more efficient than pre-existing algorithms at achieving that capability.
Their arguments seem reasonable to me; the key question then becomes how
useful these new capabilities are. (Who cares about dramatically increasing the
efficiency of new capabilities if those capabilities aren’t useful?)

○ My impression is that the growth in AI’s economic importance since 2012 has
mostly come from new capabilities, rather than merely from increasing the
efficiency of capabilities that already existed before 2012.239

○ There is very large variation among humans in terms of effectiveness at software
R&D.240 This suggests that, around the human level, there are very large gains to
software R&D from increased capabilities.

○ More speculatively, perhaps AGI whose (collective) capabilities surpass any
human will identify new kinds of software improvements that humans cannot see.
Perhaps many such improvements will exist, as humans haven’t been able to see
any of them. If so, there could be extremely rapid progress once AIs surpass the
best humans.

○ Overall, this gives me a prior that capability improvements will be a much bigger
deal than efficiency improvements during a software-only singularity. So if we
previously thought r = 1 for efficiency improvements only, you might think r = 3
when you include capability improvements (so that capability improvements are
twice as big a deal as efficiency improvements).

● Grace (2013) measures algorithmic progress in 6 domains, and finds that in many areas
about half of all progress is due to software and half due to hardware.

○ I believe that these improved algorithms often used constant or increasing
amounts of compute, so her evidence speaks to non-efficiency gains from
software.

○ One extremely hacky way is to assume that her measure of ‘hardware progress’
maps to increases in FLOP/$, and assume that inputs to software R&D have
grown at the same rate as inputs to hardware R&D. Then the returns to software
R&D will be the same as we calculated earlier for hardware: r = ~7.

○ This is very far above the threshold for a singularity (r = 1). In the last section I
adjusted the efficiency estimate down from r = 2.9 to r = 1.1 based on a few

240 I’ve heard there is SMPY data on this but I couldn’t find them with an hour or so looking. Salary
differentials are indicative, but they may underestimate true productivity differences for social reasons.

239 People could dig into this: the specific use cases that generate revenue and the algs used for them.
238 Section 5.3 of the paper that accompanied the AI and Efficiency blog.

https://intelligence.org/files/AlgorithmicProgress.pdf
https://en.wikipedia.org/wiki/Study_of_Mathematically_Precocious_Youth
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
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objections; similar adjustments here241 would still leave the overall estimate at r =
~2.5.242

○ An important caveat, discussed more below, is that these returns might not be
possible without increasing the amount of physical training FLOP and runtime
FLOP/s.

● Eliezer Yudkowsky argues that the evolution of humans suggests that there are
favourable returns to improving the algorithms for general intelligence around the human
range, and that those returns aren’t sharply diminishing. Roughly speaking, this
corresponds to the claim that r is large when software reaches human levels. It’s hard to
translate this into a quantitative claim, but the next footnote argues from Yudkowsky’s
claim to the conclusion that r > 2 (around the human range).243

○ I find this evidence fairly unconvincing for the same reasons given in Paul
Christiano’s blog post. Selection for intelligence, in particular for learning from
and communicating to others, may have increased significantly during this period
due to the massively increased importance of culturally accumulated knowledge
for survival.244

● Evidence from within ML suggests ‘cleverer’ models make much better use of compute.
○ Jones (2021) finds that, when training AlphaZero on the game Hex, using 10X

more training compute reduces the runtime compute245 needed to achieve a
given test result by 15X.246 In other words, a model that is “10 times smarter” (as
quantified by its training FLOP) can achieve the same result with 15X less
thinking (as quantified by its runtime FLOP).247

247 We can relate this to model size, i.e. FLOP/s at runtime, if we make an assumption relating training
FLOP to runtime FLOP/s. Let’s assume that when you double model size you need 4X the training FLOP.
In this case, 10X more training FLOP corresponds to a ~3X bigger model. Jones’ result is then that a 3X
bigger model achieves the same result with 15X less runtime FLOP/s. This means it thinks for 45X

246 This implies that, with a fixed budget for both training and runtime, it’s optimal to spend ~55% on
training and ~45% on runtime. (The system is Cobb Douglas: test result = Train^0.55 * Runtime^0.45. I
have verified that this Cobb Douglas equation roughly reproduces Jones’ results.)

245 The reduction in runtime compute comes from reducing the depth of the tree search. (It must be
reduced by more than enough to compensate for the mdoe being larger.)

244 The Secret of Our Success is the best account of the importance of culture to the biological evolution
of humans that I’m aware of.

243 Yudkowsky argues that the effort needed to increase intelligence didn’t significantly increase during the
evolution from Australopithecus to Homo erectus to Homo sapiens. In this period, he claims, brain size
increased by a factor of four. If software increased by a similar factor over this period (i.e. if better
software was responsible for the same share of cognitive improvement as bigger brains), then software
too increased by 4X.  According to the model of this report, the effort needed to improve software
increased by 4^(1/r) during the period. Suppose we accept Yudkowsky’s claim that the effort needed
didn’t increase much; let’s commit to saying it increased by <2X. To meet this commitment, we’d need
4^(1/r) < 2, which implies r > 2.

242 7 * 1.1 / 2.9 = 2.65

241 Are these objections applicable? The first (inputs rose more quickly than we assumed) might apply if
the problems studied received faster growing investment than is typical for software. The second (low
hanging fruit due to more physical FLOP) applies more strongly as I believe the amount of physical FLOP
by the systems studied in Grace (2013) was continually increasing. (By contrast the physical FLOP used
on Imagenet didn’t increase after 2012 in the OpenAI data.) The third objection (minimal effort to make
algorithms compute-efficient before 2012) doesn’t apply, as it was specific to 2012.

https://intelligence.org/files/IEM.pdf
https://sideways-view.com/2018/02/24/takeoff-speeds/
https://arxiv.org/pdf/2104.03113.pdf#page=5
https://docs.google.com/spreadsheets/d/1HgmyK8yy4DxuVFl0TkLsrKTM8dqgYmzN3fyZTrx9CE8/edit#gid=0
https://www.amazon.com/Secret-Our-Success-Evolution-Domesticating/dp/0691166854
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○ On a simple intuitive level, this suggests that the returns to training more capable
AIs could be large. Increases in training FLOP, or simply training efficiency, could
result in significantly more capable AIs.

○ A simple toy model supports this intuition.
■ To simplify the model, let’s suppose 10X more training FLOP reduces the

runtime FLOP needed for a given result by 10X, rather than 15X. I.e.
doubling training FLOP means that only half the runtime FLOP is needed
to achieve a given result.

■ Suppose we have 1000 FLOP available to us in each timestep. Each
timestep we must use the latest algorithms to train AGI from scratch and
then run AGIs to improve AI algorithms.

■ It turns out that, given our assumptions, it’s optimal to use 50% of our
FLOP on training and 50% on runtime. 500 FLOP each.

■ First, let’s walk through an example where we don’t increase training
efficiency and so don’t train more capable AIs.

● Suppose that in the first timestep AGIs double cumulative R&D
inputs. Further, assume that this doubles runtime efficiency (i.e.
assume r_runtime=1) but doesn’t change training efficiency
(assume r_training=0). The new algs take the same amount of
FLOP to train, but run on half as many FLOP/s.

● Then in the second timestep we’ll again use 500 FLOP to train
AGIs of the same ability, but we can run twice as many of them
with the other 500 FLOP. We get twice as much R&D done as in
the first timestep, so we double cumulative R&D inputs again. As
before, this doubles runtime efficiency (r_runtime=1) but doesn’t
change training efficiency (r_training=0).

● The process continues: in the third timestep we again use 500
FLOP to train our newly designed AGIs, use the other 500 FLOP
to run 4X as many AGIs as in the first timestep, double cumulative
R&D inputs again, so double runtime efficiency (r_runtime=1) but
don’t change training efficiency (r_training=0).

● The process can continue indefinitely. We chose the knife-edge
r=1, and so the software doubling times are constant over time. If
we’d chosen r > 1, each doubling would have taken less long.

■ Now let’s walk through an example where we do increase training
efficiency.

● Like last time, AGIs double cumulative R&D inputs on the first
timestep and this doubles runtime efficiency (r_runtime=1). This
time let’s assume it also doubles training efficiency (r_training=1).
The new algs take half as much FLOP to train and run on half as
many FLOP/s.

less long! Or, equivalently, a 2X bigger model achieves the same result with 6X less FLOP/s and 12X less
thinking time.
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● Then in the second timestep we could train AGIs of the same
capability with only 250 FLOP, and use the other 750 FLOP to run
them twice as efficiently as before. We would get three times as
much R&D done as in the first timestep. (2X as efficient, using
1.5X the runtime FLOP.) Call this option 1.

● Alternatively, we could use 500 FLOP for training. Compared to
the option 1, this doubles training FLOP. We will train more
capable AIs than in option 1.248 How much more capable? Above,
we assumed that doubling the training FLOP halves the runtime
FLOP needed to achieve a given result. (This was based on Jones
(2021).249) So our more-capable-AGIs will achieve the same
output with half as many runtime FLOP, compared to option 1. We
could achieve the same software progress as option 1 by running
them with 375 FLOP, but in fact we can run them with 500 FLOP.
This means we’ll get 500/375 = 4/3 times as much R&D done as
in option 1, and four times as much as in the first timestep. Call
this option 2.

○ There’s a factor of 2 from reducing the runtime FLOP of
our old AGIs, and a factor of 2 from using more efficient
training to train more capable AGIs. Based on the result
from Jones (2021), improvements to runtime and training
combine multiplicatively.

● Option 2 is better than option 1, by a factor of 4/3, because it
exploits the ability to train smarter AGIs. The actual numbers from
Jones (2021) suggests the true effect of increasing training
efficiency would be slightly larger. (He found 10X more training
compute drives 15X more runtime efficiency, whereas we
assumed it would drive only 10X.)

● In this toy model, there’s a software only singularity just if
r_runtime_efficiency + r_training_efficiency > 1; we saw earlier

249 [Weedsy fn.] We are applying the result from Jones (2021) in a subtly different context here. The
original result showed that doubling the physical training FLOP (slightly less than) halved runtime FLOP to
achieve a given result. There was only one algorithm used (AlphaZero). Here we are again imagining
doubling the physical training FLOP, but we also imagining that we just halved training FLOP by making
algorithmic improvements. You could object that the doubling training FLOP won’t halve runtime FLOP if
you’ve just made some algorithmic improvement to make training more efficient. Maybe that efficiency
improvement only improves training at the new smaller scale, but not so much at the original scale? This
objection doesn’t seem convincing to me. My guess is that the training algorithms developed since
AlexNet (the 2012 ImageNet system) also function well at the training FLOP used for AlexNet. Much more
significant to my mind is the fact that Jones (2021) is a toy environment, while we’re here imagining AI
that can do 100% of cognitive tasks.

248 By analogy with Jones (2021), this happens via training a bigger model (one with more FLOP/s) than in
option 1. Remember, option 1 itself involved AGIs using half as many FLOP/s as in timestep 1, so in
option 2 AGIs will use more than half as many FLOP/s. How much exactly? If we assume model size
goes with sqrt(training FLOP) then the model size will be 0.5*sqrt(2) = ~0.7 times as big as in timestep 1.
So models still get smaller, but they also get smarter, due to the combined effects of training
improvements and runtime improvements.
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that an efficiency only singularity occurs just if r_runtime_efficiency
> 1. So this toy model suggests that a software only singularity is
considerably more plausible.

○ Above I estimated r_runtime_efficiency = 2.9, based on
data about ImageNet (though revised it downwards to 1.1).
What about r_training_efficiency? The same AI system
driving the runtime estimate produces an estimate of
r_training_efficiency = 3.2,250 which a similar discount
would reduce to 1.2.

○ More generally, most improvements in runtime efficiency
also increase training efficiency,251 but not vice versa.252 So
I’d expect r_training_efficiency > r_runtime_efficiency. This
implies that we get a software singularity as long as
r_runtime_efficiency > 0.5. This is definitely the case now,
and I expect it will still be true when we get to AGI, but I’d
still assign >25% to the contrary.

■ All this is to say that a toy model implies that being able to train cleverer
models would make a software-only singularity significantly more
plausible. It uses a tradeoff between runtime and training FLOP that
Jones (2021) observed in a toy environment, but that type of tradeoff
does seem plausible.

■ This suggests that if we thought r = 1 only including runtime efficiency
improvements, we should think r > 2 once we include training efficiency
improvements that can lead to more capable models. (Because in the toy
model the contribution of the latter was expected to be bigger,
r_training_efficiency > r_runtime_efficiency.)

● If we discover a learning algorithm that scales as efficiently with training and runtime
FLOP as the human lifetime-learning algorithm, then it seems plausible we could do a
software-only singularity just by making that algorithm more efficient.

○ Correlations between brain size and IQ, and IQ and productivity, suggest a
relationship between brain size and productivity in humans. In particular, a 10%
bigger brain is ~5 IQ points smarter, and so ~30% more productive. Extrapolating
heroically, a 2X bigger brain is ~8X more productive.

○ Suppose you had (an inefficient version of) the human learning algorithm, and
were able to make it 2X as efficient. That would mean that, using the same
amount of physical FLOP as before, you could train and run a model that was like
a “2X bigger brain” and so was 8X more productive.

○ Whether you succeed in doing a software-only singularity or not depends on
whether you become faster or slower at making 2X efficiency improvements of

252 For example, improving the optimiser or the hyper parameters don’t affect runtime efficiency.

251 Training consists in doing multiple forward passes. If you increase runtime efficiency, you decrease the
compute for each forward pass.

250 While the system’s runtime efficiency increased 18X (growth rate 55%), its training efficiency increased
by 21X (growth rate 61%). With the same assumption that cumulative inputs grew at 19%, this implies
r_training_efficiency = 61/19 = 3.2.

https://arxiv.org/abs/1707.01083
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that kind. To succeed, each 2X efficiency improvement must take <=8X as much
effort as the last.

○ This condition will hold unless diminishing returns to efficiency improvements are
much steeper than they are today.

■ For context the estimate of r_efficiency = 2.9 from Imagenet models
corresponds to each 2X efficiency improvement taking 27% more effort
than the last. Much less than 8X more effort!253

■ We can use a model like before, where r_brain_alg means: when you
double cumulative R&D inputs you double the efficiency of the human
learning algorithm r_brain_alg times. The condition for software-only
singularity is r_brain_alg > 0.3. This is a lot lower than the estimates
we’ve been seeing.

● Translating back to the condition on overall r (‘When we double
cumulative software R&D inputs, how many times do we double
productivity?’), I see this as evidence that r > 1, perhaps
comfortably so.

■ Here’s a toy model of this dynamic.
○ A qualification here is that perhaps the human learning algorithm scales well

within the human range of variation (±10%), but no further. Or perhaps by the
time we find anything that scales this well, we’ll have already hit the ultimate
limits to software. On the other hand, you might think we could get better scaling
than the human learning algorithm by scaling data in proportion to model size.
(The human learning algorithm keeps data fixed as brain size increases.)

I said I was 50-50 on an efficiency only singularity happening, at least temporarily. Based on
these additional considerations I’m now at more like ~85% on a software only singularity. And I’d
guess that initially r = ~3 (though I still think values as low as 0.5 or as high as 6 as plausible).
There seem to be many strong ~independent reasons to think capability improvements would
be a really huge deal compared to pure efficiency problems, and this is borne out by toy models
of the dynamic.

How long might a software-only singularity last?
Even if a software only singularity occurs, there’s a further question of how much software
improves before software doublings start to slow down. I don’t have much to say here. There
are a few sources of evidence that I’m aware of:

● How big were the total efficiency improvements on ImageNet? Runtime efficiency
increased 18X from 2012 to 2017; training efficiency increased 44X from 2012 to 2019.
Perhaps returns to increasing the efficiency at which we achieve AlexNet-level
performance become much worse shortly after this (though returns for making more
capable models more efficient might be better). We can anchor to this and predict total
gains of 2 - 5 OOMs before returns become worse and doublings start to slow down.

253 2^(1/2.9) = 27%.

https://docs.google.com/spreadsheets/d/1ydGmUGpgkcxl4be5iJeu2HbWthq7_gGpMXenae80Pe8/edit#gid=0
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○ Why 2 OOMs? Conservatively only include training efficiency increases (44X)
and assuming these ran out soon after 2019 (at 100X).

○ Why 5 OOMs? Combine training and runtime increases multiplicatively as in the
toy model above: 18 * 44 = 800, ~3 OOMs. Then assume the trend could
continue for another ~2 OOMs before running out.

● How far away are ultimate limits to software efficiency (at this level of physical
FLOP)?

○ Runtime efficiency.
■ I expect that when we first train AGI, its runtime efficiency will be less than

the human brain. The first version of an AI system with a new capability is
typically not well optimised for runtime efficiency. AGI might initially be
10X or 100X less efficient than the human brain, perhaps much more.

■ In addition, I’d guess that the ultimate limits for runtime software efficiency
are significantly better than that of the brain:

● The brain does specialised cognitive tasks using general thinking
software that is much less efficient than specialised software
would be (e.g. doing mathematics using neural networks).

● There’s significant variation between humans in IQ, even holding
brain size fixed.

● In evolutionary time, we have not had brains our size for that long;
and they have not been optimised for doing the cognitive tasks
needed for science for long.

● AI will have a some significant structural advantages over humans
that make them more productive; e.g. faster serial speed, no
leisure (though there are potential ethical concerns here), more
motivated to work hard and coordinate effectively. More.

■ Overall, 3 OOMs or more increase here seems likely before hitting limits.
○ Training efficiency.

■ When we first train AGI, its training efficiency will be many OOMs below
human learning efficiency. Human lifetime-learning takes ~1e24 FLOP,254

and training AGI with 1e30 FLOP would be less than my median. Naively,
that suggests 6 OOMs improvement available just in training efficiency.

● Even if the human learning algorithm is extremely complicated and
evolution has learned thousands of clever tricks, in principle AI
could discover and hardcode them themselves.

■ It seems like human learning efficiency is not close to physical limits.
● We could do much better to fully optimise people’s experiences for

learning, e.g. by providing better and more personalised learning
curricula.

● Again, there’s large variation in learning efficiency between
humans.

254 Quoting from Bio Anchors: “I took the anchor distribution to be the number of total FLOP that a human
brain performs in its first 1 billion seconds (i.e. up to age ~32); my median estimate is (1e15 FLOP/s) *
(1e9 seconds) = 1e24 FLOP.”

https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.87mp14r9lgsj
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● Again, there’s only a limited amount of time (on evolutionary
timescales) that human-sized brains have been optimised for
learning. And much less time still being optimised to learn in our
current cultural environment (e.g. from books).

● So if there’s 2 - 5 OOMs of software gains still to be had once we
get AGI, perhaps returns become worse (ending the software
singularity) after ~2 OOMs.

■ Overall, 5 OOMs or more increase here seems likely before hitting limits.
○ Bigger brains

■ Even if human brain learning and runtime efficiency is at physical limits,
you could increase total productivity simply by training bigger brains.
Above I discussed the naive estimate that doubling brain size would 8X
productivity; this means 4X more output per FLOP.

■ If we trained 100X bigger-than-human brains using the human lifetime
learning algorithm, this would take 100X the compute (people with bigger
brains don’t take longer to learn), 1e26 FLOP. That would increase
productivity by 10,000X, 4 OOMs.

○ What do ultimate physical limits tell us about how long the software-only
singularity will last?

■ If initially r= 2 and we’re Y OOMs from ultimate physical limits to software,
and the software-only singularity requires r>1, then a really simple model
might say that the singularity will last for Y/2 OOMs. The idea is that r=0
at ultimate limits, and we assume it falls a constant amount towards 0 with
each OOM of software improvement.

■ We guesstimated 3 OOMs to improve runtime software efficiency, 5
OOMs to improve training efficiency and at least 4 OOMs to increase
output by training bigger models. I think these are multiplicative,255

summing to 12 OOMs.
■ So then if we start at r = 2, then the software singularity would last for 6

OOMs. (Above my best guess was r=3, so i’m being somewhat
conservative here.)

■ Clearly, a lot of work is being done by the assumption that r = 2 when the
software singularity starts (i.e. when we fully automate software R&D).
Assumptions of r = 1.2 would lead to a much shorter singularity; r = 4
would lead to a much longer one.

■ A lot of work is also done by the linearity assumption, that r decreases
steadily OOM by OOM. Maybe r falls quickly to ‘close to 0’ and then
slowly approaches 0 over subsequent OOMs.

● Directly estimate r at human levels of software. Above I discussed Yudkowsky’s
claim that returns to software aren’t sharply diminishing around the human level of
intelligence, and suggested we could very roughly parse the claim as r > 2. This implies

255 Training and runtime improvements are multiplicative in the toy model above, and then training bigger
brains is clearly a distinct type of improvement.
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that, even when software is at human levels, returns would have to become notably
worse before a software only singularity stopped.

I don’t trust any of these lines of evidence, but my best guess is that, based on the evidence
discussed so far, a software singularity, if it started, would last ~5 OOMs before software
doublings become slower. It could be 1 OOMs, or even 10 OOMs.

Importantly, even after software doublings become slower (r < 1), there may still be very fast
software progress for multiple doublings. For example, if r = 0.5 then each doubling takes twice
as long as the previous one. If the fastest software doubling took 1 week, after which each
doubling is twice as long as the previous one, there would still be 16X software progress over
the next 30 weeks.256

Bottlenecks from a fixed supply of physical FLOP
Two bottlenecks are salient to me.

1. The need to experiment to find better algorithms
2. The dependence of software progress on using more physical compute.

The need to experiment to find better algorithms
As discussed in section 6, one seemingly important contributor to software R&D is doing
experiments to see which algorithms have good performance in practice. Across all the data
series considered in this section, the physical FLOP available for doing such experiments was
increasing exponentially while software progress happened. Perhaps this exponential growth in
physical FLOP was needed to run enough experiments to maintain the observed pace of
software progress. Perhaps we’d have seen slower software progress if the amount of physical
FLOP had remained constant (as it would in a software singularity). If so we’d have estimated a
lower value for r and judged the software singularity to be less likely.

For example, I estimated that r = 2.9 for runtime efficiency improvements on Imagenet. But
perhaps we’d have only seen half these improvements had the physical FLOP used for
experimentation remained constant. In which case I’d have instead estimated r = 1.45, and
lowered my probability of a singularity accordingly. And similarly, perhaps the software
improvements observed in Sherry and Thompson (2021) and Grace (2013) would have been
smaller had the physical FLOP for experimentation remained constant. Again this would reduce
the estimates of r that I derived and make a software singularity look less likely.

To make the potential bottleneck here concrete, let’s imagine trying to achieve an efficiency-only
singularity. Each doubling of efficiency will require a certain number of experiments. We can
compare the number required for one efficiency doubling with the number required for the next
efficiency doubling. The key question is: How does the number of experiments required change

256 The next four doublings take 2 weeks, 4 weeks, 8 weeks, and 16 weeks. That’s 2^4=16X progress in
30 weeks.

https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
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for successive efficiency doublings? If we needed a constant number of experiments to achieve
each efficiency doubling, the physical FLOP needed for experimentation would actually
decrease over time. After the first doubling, each experiment would take half as much physical
FLOP.257 If we needed twice as many experiments for each new efficiency doubling, the physical
FLOP needed for experimentation would be constant over time. Each successive doubling
would require twice as many experiments, but each experiment would use half as much
compute. The effects would cancel. Lastly, if we needed more than twice as many experiments
for each new efficiency doubling, the physical FLOP needed for experimentation would increase
over time.

If we instead imagined a software-only singularity that included improvements in the capability
of AGIs, then this analysis would shift. In the previous paragraph, after each software
(efficiency) doubling, the physical FLOP per experiment halved. But capability improvements
would make experiments more computationally expensive. So the physical FLOP per
experiment would not halve after each software doubling; it might decrease more slowly than
this, or even increase if new models use more physical FLOP/s.258 This makes it comparatively
more likely that experiments would significantly bottleneck progress.

Still, we could get significant capability gains while doing a fixed number of experiments per
software doubling, by holding physical runtime FLOP/s fixed. And we can adjust how we
conduct software R&D to reduce the reliance on large experiments (e.g. conducting
experiments on a smaller scale, reasoning more from first principles, inferring the outcome of a
training run from the first 100 timesteps, a move back to “good old fashioned AI” where AI
runtime software is handwritten). I think experiments would probably eventually bottleneck
capability improvements, but this might not happen until we’ve seen multiple OOMs of
improvements.

One way to model this would be to have physical FLOP perform some fraction of software R&D
tasks;259 this input would stay fixed during the software singularity and so eventually (if R&D
tasks are complementary) bottleneck progress. I believe Epoch are investigating a model of this
kind.

My takeaways from the previous few paragraphs are:
● The number of experiments for each software doubling has to increase at a fast

exponential rate for it to block an efficiency only singularity. This doesn’t seem very likely.
● It is more likely to be a bottleneck for capability increases, but this is not guaranteed.

259 You could use the fraction of lab spending on physical FLOP vs talent to decide the fraction of software
R&D tasks performed by physical FLOP. (Although physical FLOP allows labs to develop and run AIs, as
well as improving their algorithms; so this is problematic.)

258 This depends on the balance between runtime efficiency improvements and capability improvements,
and on how capability improvements affect the AGI’s runtime FLOP/s. If we are increasing the physical
FLOP/s of our SOTA AIs, then we will have fewer experiments at that scale; but capability improvements
can also come from using a fixed amount of FLOP/s more effectively.

257 I’m assuming that the physical FLOP required for an experiment is proportional to the runtime FLOP/s
of the system the experiment is investigating.

https://en.wikipedia.org/wiki/GOFAI
https://epochai.org/
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● Overall, I’d be surprised if experimental bottlenecks block a software-only singularity in
its early stages, but wouldn’t be surprised if they blocked it after a couple of OOMs of
improvements.

● I think this consideration should lower our estimates of r; if I had to say it would lower r
from 3 to 2.

● It also lowers my probability that a software-only singularity will occur at all from ~85% to
~70% and makes me think any software singularity would last less long (~2-3 OOMs
rather than ~5 OOMs).

The dependence of software progress on using more physical compute
A decent chunk of software progress may be the result of software adapting to larger hardware
scales (h/t Paul Christiano). In other words, there are fast diminishing returns to improving
algorithms that use a fixed budget of (physical) FLOP/s, but using more FLOP/s allows us to find
new algorithms that are much better adapted to the additional FLOP/s than our previous
algorithms.

As a concrete example, suppose alg1 has efficiency 100 when run on 1e9 FLOP/s. alg2 has a
very similar efficiency of 105 when run on 1e9 FLOP/s. But when run on 1e10 FLOP/s, alg2 has
an efficiency of 200, compared to alg1’s efficiency of 110.

Efficiency of algorithms alg1 alg2

1e9 FLOP/s 100 105

1e10 FLOP/s 200 110

alg2 is much better adapted to the new FLOP/s budget than alg2, even though their
performance was similar on the old budget.

If much historical algorithmic progress is of this sort, then algorithmic progress would become
much slower if our budget of FLOP/s remained constant (as during a software-only
singularity).260

There’s a couple of reasons it could be easier to improve algorithms are larger hardware scales:
● Less effort has been made to optimise algorithms for that large scale historically, so

there’s more low-hanging fruit.
● Improvements in scaling behaviour (e.g. moving from O(n^2) to O(nlogn), or moving to

Chinchilla scaling) have bigger effects at larger levels of FLOP/s.

How does this consideration affect the estimates of r that I’ve used in this section?

260 How Fast do Algorithms Improve supports the idea that we’ve only maintained our overall pace of
algorithmic progress by increasing our physical FLOP budgets. It finds that algorithmic progress is faster
at larger problem sizes.

https://ide.mit.edu/wp-content/uploads/2021/09/How_Fast_Do_Algorithms_Improve.pdf
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● The AI and Efficiency and the How Fast do Algorithms Improve estimates are affected in
similar ways.

○ They both measure algorithmic progress as a reduction in the FLOP/s to achieve
a given capability. Their measured software progress does not rely on using new
algorithms that are better adapted to new scales of FLOP/s.

○ However, the fast software progress they measure may be a result of adapting to
a new large hardware scale, as happened with ImageNet in 2012. This could
mean that the researcher inputs to software R&D for that new hardware scale
grew especially quickly during that time, because the scale was previously
neglected.

○ I already adjusted for this consideration for AI and Efficiency, where I ended up
on r = 1.

○ I didn’t adjust for this in How Fast do Algorithms Improve, so will make an
additional adjustment from r = 1.6 to r = ~1.2.

● The (very rough) estimate based on Grace (2013) would be more affected. It looked at
software progress over periods of time when the FLOP/s used by systems increased; if
instead the FLOP/s used had remained constant, software progress may have been
slower.

○ I estimated r = ~7, then adjusted down to r = ~2.5. I’d now adjust this further to ~r
= 2.

So this mostly affects the estimate of r from Grace (2013), the only one that suggested a
software singularity would happen comfortably. The estimates of r = ~1 from ImageNet and How
Fast do Algorithms Improve aren’t affected much.

Paul Christiano and Carl Shulman commissioned work to investigate this objection. They
compared the performance of an old chess algorithm to a new algorithm at both old levels of
(physical) FLOP and new levels of FLOP. The old algorithm was 1998 Fritz [black line] and the
new algorithm was 2021 Stockfish [blue line].

https://www.lesswrong.com/posts/ax695frGJEzGxFBK4/biology-inspired-agi-timelines-the-trick-that-never-works?commentId=EuHZLiKcXMeahpqMB
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[x axis shows compute used by a system; y axis shows its Elo rating. Each line corresponds to a
different algorithm.]

If the objection is correct, 2021 Stockfish should have a bigger advantage at the new hardware
scale (~10,000 kNodes) than the old scale (~100 kNodes).

It’s ambiguous whether this is the case. It depends how you measure it.
● The Elo differences between the two algorithms are slightly bigger at the old hardware

scale. At 100 kNodes, the Elo gap is ~1000, at 10,000 kNodes it’s ~800. This suggests
algorithmic progress didn’t rely on increasing the hardware scale.

● But the efficiency improvements are bigger at the new levels of FLOP than at old levels
of FLOP. Suppose you ask “how many times fewer FLOP does the new algorithm need
to match the performance of the old algorithm?”. 2021 Stockfish needs 100X fewer
FLOP to match the performance of 1998 Fitz at 100 kNodes, vs ~500X fewer to match
its performance at 10,000 kNodes.261

261 The data also suggests that capability improvements are more significant than efficiency
improvements. New algorithms achieve capabilities that would have taken old algorithms >10 OOMs of
extra FLOP. By contrast the efficiency improvements are 2 - 3 OOMs. This confirms OpenAI’s claim,
above, that the first time a capability is achieved, the algorithm used is typically much more efficient than
pre-existing algorithms at achieving that capability.
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Overall, it seems plausible that software progress does depend on moving to new hardware
scales to some extent. This mostly affects the estimate based on Grace et al, which was already
extremely rough. This consideration slightly decreases my probability that a software singularity
occurs, down from ~70% to ~65%.

Summing up
I’ve tried to assess the plausibility of a software-only singularity by looking at data about the
historical returns to software R&D. I proceeded in a few steps:

● ImageNet data left me thinking that there was ~50% chance of a singularity based on
efficiency improvements alone.

● Including significant potential gains from capability improvements increased this to
~85%.

● If a software-only singularity does occur, I guessed it might last for ~5 OOMs.
● Considering two potential bottlenecks, neither of which seemed compelling to me,

lowered my estimates somewhat:
○ ~65% chance of a software-only singularity
○ I expect it to last ~2-3 OOMs if it does occur.

● Importantly, even if there is no software-only singularity, software progress might still be
extremely rapid just after we fully automate software R&D due to the huge rise in R&D
inputs. There could be multiple OOMs of fast progress on a fixed hardware base even if
software doublings are slowing down over time. In addition, I expect the quantity of
hardware to be increasing rapidly, driving further software progress.

Open questions
I’ve organised these open questions according to which components of the model they’d inform.
I highlighted the ones that I thought had the best combination of importance and tractability in
yellow.

● To inform g($ on FLOP globally) - semiconductor production scale up
○ If people were willing to spend $ trillions expanding semiconductor production,

how long would it take to double the number of chips produced per year?
■ Via new fabs and more efficient use of existing fabs. Not via better chip

designs - this falls under R&D scale up.
■ Are there fundamental physical bottlenecks to increasing manufacturing

throughput above a certain level? E.g. a certain crystal needs months to
be grown and this can’t be expedited.

■ How would the above answers change if there was also abundant
specialised cognitive labour (from AIs) to help with the expansion?

■ Use expert networks to speak to someone at TSMC / Intel / Samsung
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● To inform g(fraction of FLOP on a training run) - prospects for rapid scale up of
training runs

○ If you wanted to actually use 30% of global FLOP/s in a training run, how would
you do that? What bottlenecks would there be? How long before you can start
the training run?

■ What fraction of existing FLOP could you rent? What fraction of new
production could you buy without being blocked? How much engineering
effort would it take to distribute training over ~1000X more chips than
we’ve done to date?

■ Speak to people at Anthropic and OpenAI about the engineering barriers.
■ What is the highest fraction of FLOP/s that could be used in a single

training run in various scenarios?
○ Improve our empirical estimates of how the fraction of FLOP on a training run is

likely to change over time.
■ What FLOP/s is currently available from all the world’s AI chips?
■ How quickly will the FLOP/s globally and from AI chips grow over the next

10 years?
■ How easy would it be to reappropriate production lines currently

producing non-AI chips to make AI chips?
■ How will the FLOP on the largest training run grow over the next 10

years?
● To inform g(FLOP/$) - prospects for future hardware progress.

○ Near-term forecasts of FLOP/$ from speaking to industry experts.
■ In a ‘business as usual’ scenario where AI improvements are modest.
■ What happens with hardware if we get AGI in 2030?

● How many gains are still available from fabless R&D, improving
the designs of chips made with existing fab production processes?

● Once these gains have been taken, what’s the next lowest
hanging route to hardware progress?

○ Alternative paradigms: are quantum computing or optical computing plausible
over the next few decades? What magnitude of improvement might they bring?

○ If people were willing to spend $ trillions on hardware R&D, how would that affect
the rate of progress?

■ How much money could the field usefully absorb?
■ How many people could move in from adjacent fields and usefully

contribute?
■ How sharp would the diminishing returns be to increased spending within

each year?
■ What are the current bottlenecks to R&D progress, to what extent could

they be relieved by more $?
○ If people were willing to spend $ trillions on hardware R&D and there was

super-abundant expert cognitive labour (from AIs), how would that affect the rate
of progress?



120

■ What are the current bottlenecks to R&D progress, to what extent could
they be relieved by more $ and abundant cognitive labour?

● To inform g(2020-FLOP per FLOP) - prospects for future software progress
○ Gather up to date versions of the data from ‘AI and efficiency’ paper, for a variety

of AI benchmarks.
■ To inform r_software.

○ Do more experiments where you run both old and new hardware using both old
and new algorithms. Investigate whether the new algorithms only help with the
new hardware, vs whether they help equally with old and new hardware.

■ To inform r_software and whether software progress is dependent on
hardware.

○ Think of a new and better way to conceptualize (and ideally quantify) software
progress that allows us to achieve new capabilities.

■ The first time a new capability is achieved, the algorithm that achieves it
often does so using orders of magnitude less compute than any
pre-existing algorithm.

● E.g. these chess graphs, and section 5.3 of the ‘AI and Efficiency’
paper.

■ This is at odds with our formalism, in which the compute requirements for
new and old capabilities decrease gradually year on year, halving every
~2 years.

■ The challenge here is simply to suggest a new framework for software
progress that better captures the nature of software improvements that
unlock new capabilities.

● The new framework may imply, contra Bio Anchors, that we could
not have trained AGI with ~1e36 FLOP using 2020-algs.

■ To improve the way I’m modelling software progress.
○ Estimate the correlations between IQ and output on key tasks like R&D.

■ We can combine this with IQ-brain size correlations discussed above.
■ The relationship between brain size and output informs the effective

FLOP gap, whether a software singularity is likely to occur, and takeoff
speed according to a one-dimensional model of intelligence.

○ Empirically, how ‘jumpy’ is algorithmic progress? What fraction of the total gains
happen in unusually large discrete jumps vs normal progress.

■ To inform whether I should put more probability on large discontinuous
jumps in capability.

○ During a software-only singularity, might it be possible to avoid retraining each
generation of AGIs?

■ What techniques for making AI systems more efficient don’t require
retraining from scratch? How big are the efficiency gains from these
techniques? How long do they take?

■ If the model size increases significantly, is it possible to avoid retraining
the system from scratch (e.g. by initializing the weights of the new larger
system using the weights of a smaller system)?

https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.hikm424g06eu
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=12
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.dor321f7pjrl
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.80v74jp0stdw
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■ If a new architecture is introduced, is it possible to avoid retraining the
system from scratch?

■ To what extent could ~all AI training by done via online learning, so that
precious compute is not “wasted” on training rather than running AGIs?

■ How can we integrate the answers to these questions in my analysis of
whether a software singularity will occur?

○ What would ‘automating 20%, 50%, or 80% of software R&D’ look like in
practice?

■ Speak to AI researchers about what tasks they perform. Estimate the time
spent on each type of task. Describe what it might look like for AI to
perform tasks that currently take x% of researchers’ time.

■ What percentage of these tasks could SOTA AI profitably perform today?
■ What percentage of tasks will AI be able to perform with a training run of

(e.g.) 1e27 FLOP.
■ To inform whether it will be possible to get large productivity gains from

partial software automation in practice.
○ How much easier will it be for AI to readily automate a large fraction of AI R&D

tasks compared to a large fraction of the broader economy?
● To inform the speed-up from automating AI R&D sooner than the global economy.

○ How much easier will it be for AI to perform all cognitive tasks in AI R&D than all
cognitive tasks in the broader economy?

● To inform the size of the effective FLOP gap
○ My research into evidence about the effective FLOP gap was fairly shallow. Two

factors in particular could be investigated further.
■ How AI capabilities vary with training FLOP.

● How does the performance of AI systems vary as we increase the
training FLOP 10X - 1000X, but hold algorithms constant? What
does this suggest about the increase in training FLOP needed to
cross the effective FLOP gap?

● Are there some domains where it takes significantly more FLOP to
train AI than others? E.g. perhaps achieving human level at some
band of games takes more FLOP than achieving human level for a
comparably narrow band of language tasks.

■ How animal capabilities vary with brain size.
● Pick animals with 3X, 10X, 30X 100X smaller brains than humans.

Learn about the cognitive capabilities of these animals.
● First ask: Could the animal do useful economic tasks (or help with

R&D) if they were motivated to help (i.e. if we could perfectly
control their second by second desires).

● Second ask: Could the animal do useful economic tasks (or help
with R&D) if their brain had been optimised for this by evolution?

○ This is a weirder counterfactual so harder to think about,
but ultimately more relevant to the effective FLOP gap I
think.
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● To the extent the answers are “no, they don’t have the cognitive
capabilities to be helpful”, this suggests the effective FLOP gap is
small.

○ What is the current $ value-add of AI? How is it changes over time, or with model
size?

■ Various ways of operationalising this: investment, revenues, effect on
GDP.

■ Relevant for when AI will first be capable enough to readily add $trillions /
year to GDP.

○ Why do MIRI people think there’ll be a rapid (< years) transition from “shallow
systems” to “deep systems” where the former aren’t very helpful to science and
the latter can ~fully automate science? In the language of this framework, they
think the effective FLOP gap is small.

○ Dig into AI impacts’ finding that it took decades to cross the human range in
chess, Go and checkers.

■ This is in tension with the findings of this report. Some possible
resolutions of the tension:

● The effective FLOP gap is on the high end of my estimates,
implying high AGI training requirements.

● Progress in those games is slower due to slower investment
growth and the absence of speed-ups from AI automation.

● The effective FLOP gap is narrower than in those games, e.g.
because “capabilities scale especially quickly in the human range”
or “it’s difficult to partially automate jobs”.

■ This is also in tension with the one-dimensional model of takeoff.
■ The first step is probably finding data about how inputs to these domains

(compute at training / runtime, software R&D effort) changed while they
crossed the human range.

● To inform thinking about bottlenecks.
○ Do bottlenecks raised by economists suggest growth won’t ever accelerate?
○ To what extent do bottlenecks push towards slow takeoff in areas of strategic

importance?
○ Critique and improve my analysis of bottlenecks in sections 6 and 9.
○ To what extent is AI progress driven by running big experiments vs software R&D

labour? How fast would progress become if we had ~unlimited supply of the
latter?

○ Some slightly more fleshed out ideas here.
● Validate this model of takeoff speeds.

○ David Schneider-Joseph makes some suggestions here.

https://aiimpacts.org/is-the-range-of-human-intelligence-small/#AI_performance_on_human_tasks
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.dor321f7pjrl
https://docs.google.com/document/d/1z6NFHPhT6heT0N4_WCQhnAuKPCsZ34sWAx51HMhXnbE/edit#
https://docs.google.com/document/d/1L7IONMm1Etb3yPesqakoniO2J8w6Xh7yCEIfb0TT324/edit#heading=h.561cybjpjfhj
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Link to part 1. Link to part 3. Link to folder. Link to summary.

You should read the short and long summaries before reading sections in this document.

6. Bottlenecks from tasks AI can’t perform
I think this section of the long summary summarises most of the important takeaways
from sections 5 and 6 in a few pages. I’d only read this section if either:

● you really want to understand the math behind the automation models I’m using
further but aren’t familiar enough with growth economics already to read the
mathematical description of the Full Takeoff Model .

● you want to know how I’m choosing the value of the “bottlenecking parameters”
that control the degree of complementarity between different tasks.

Short summary
This section discusses two types of bottlenecks:

1. Human bottlenecks. Sure AIs can perform lots of cognitive tasks and we can run
zillions of AIs. But there are some tasks that humans are still needed for and those tasks
bottleneck total output. (“Total output” can mean “GDP” or “R&D progress per day”.)

2. Physical capital bottlenecks. Sure AGI can perform all cognitive tasks and we can run
zillions of disembodied AGIs. But there are still many tasks involving doing things in the
physical world, e.g. building fabs and experimenting with chip designs, and those tasks
bottleneck total output.

I discuss the strengths of these two bottlenecks in hardware R&D, software R&D, and GDP.

Using a CES task based model, as opposed to the Cobb Douglas model from the last section,
provides a convenient way to quantify these bottlenecks. The CES model contains a parameter,
, that controls the extent to which total output can be bottlenecked by particular tasks. Iρ

estimate values of for both human bottlenecks and physical capital bottlenecks, and do thisρ
separately for hardware R&D, software R&D, and GDP.

This analysis reduces the estimated effects of AI automation, compared to section 5. Section 8
discusses other bottlenecks and delays.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.e67d5t5g3z3e
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.b7u38ytodi7i
https://drive.google.com/drive/folders/1qVPd8M7Iy2jK1jmXNOKVhG4dGRtkWbL2?usp=sharing
https://docs.google.com/document/d/1os_4YOw6Xv33KjX-kR76D3kW1drkWRHKG2caeiEWzNs/edit#
https://docs.google.com/document/d/1Z7HJ9pHctgDi1XYbgRW9-7J1bxTL98KW1qb7HN7Mv-A/edit#heading=h.io269vaujkvz
https://takeoffspeeds.com/description.html
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Long summary
In section 5 we modelled software R&D, hardware R&D and Gross World Product (GWP) using
a Cobb Douglas task-based model. AI automation was represented via AI performing a growing
fraction of tasks in these three areas, with tasks weighted by their relative economic value in
2020.

The Cobb Douglas version of the task-based model omits certain bottlenecks. Suppose we
develop AI that fully automates replying to emails, but humans are still needed for other types of
work. The Cobb Douglas model implies that, merely by increasing the quantity of email-AIs and
holding all else constant, GWP could grow without limit. This is unrealistic: GWP would hit a
hard ceiling that cannot be surpassed no matter how many email-AIs you have. To raise output
further, you’d need to increase output on tasks other than emails. We’ll see that this dynamic
can be modelled by a CES version of the task-based model (explained below).

Essentially, the CES model puts a cap on how much “more output on the same task” can
increase software progress per year, hardware progress per year, and amount of goods and
services produced per year (i.e. GWP). Total output in these areas are bottlenecked by tasks
where output is lower.

This means that having more AIs (at a fixed capability level) doesn’t increase total output past a
certain point; the bottleneck can only be removed by increasing output at the tasks AI cannot
currently perform.
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The blue line shows that “more AIs on the tasks AI can currently perform” cannot increase software
inputs, hardware inputs, or GWP past a certain point. Better AI, more human labour, or more physical
capital is required to relieve this bottleneck.

This bottleneck might be removed by training more capable AIs that automate new tasks. In the
example above, this would involve training AI that can do tasks other than emails. But when
bottleneck-ing tasks require physical capital (e.g. physical experimentation), then more capable
AIs cannot remove the bottleneck and we’ll have to produce more physical capital.

Below I’ll explain my current guesses about how strong the bottlenecks might be in software
R&D, hardware R&D and GWP. In each case I separately discuss bottlenecks that can be
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relieved by training better AIs, and ones that can only be relieved by increasing the amount of
physical capital.1

In general, the effect of this analysis is to reduce the estimated effects of AI automation. In
software and hardware R&D, AI automation only becomes significant (relative to rising human
inputs) when ~40% of cognitive tasks have been automated. (The Cobb Douglas model implied
~25%.)

Again, I’m not aware of a simple, analytically tractable way to calculate takeoff speed metrics
given the feedback loops involved here. Instead I simulate the model and do a sensitivity
analysis. One result from this is that, including the bottlenecks from this section, AI automation
roughly ~halves the time needed to cross the effective FLOP gap.

Basic intuition
A strawman of (part of) the “most important century” series is ‘We’ll build some really awesome
AIs. Then those AIs will automate R&D and make economic growth go crazy.’

The response from the bottlenecks enthusiast is ‘The pace of economic growth depends more
on the stuff we do badly than the stuff we do well. Sure, AI will do loads of things really well. But
there are some things AI won’t do well and those things will ultimately place a ceiling on the rate
of R&D progress, no matter how amazing your AI is at doing other stuff.’

This same response can be made for the rate of hardware progress, the rate of software
progress, the value of goods and services AIs provide directy, AIs contribution to military
dominance, etc. In each case, AI might perform loads of relevant tasks really well but not be
transformative because of bottlenecks from tasks it cannot perform.

In general, this response is convincing to the extent that i) AI can’t perform some subset of
tasks, ii) progress really could be bottlenecked by these tasks despite AI producing high output
on the other tasks.

Even if we had zillions of disembodied AGIs, it seems plausible that certain quantities would be
bottlenecked by tasks they cannot perform. Some examples:

Quantity that is
bottlenecked

Cause of bottleneck

TFP growth per
year

Building many physical copies of newly designed technologies,
transporting them around the world, integrating them into workflows.

Hardware progress Physical experiments using specialised physical equipment and

1 I’m including bottlenecks caused by limited supply of human physical labour under the “physical capital
bottlenecks” umbrella.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.h5y78bnuknqk
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.h5y78bnuknqk
https://www.cold-takes.com/most-important-century/
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per year humans/robots, supply of rare materials to build new AI chips.

Software progress
per year

Long and expensive computational experiments to test the performance
of new algorithms.

Military power Lack of physical weapons. (I.e. even if you have zillions of AGIs, you
might lose a war to a country without AGI if you have no weapons.)

Cobb Douglas vs CES: economic production functions
How can we model bottlenecks?

This section compares two “economic production functions”: formulas for calculating economic
output given certain inputs. We’ll see that the Cobb Douglas production function doesn’t
incorporate bottlenecks while the CES production function does.

A simple model with two inputs
Let’s start with a simple example with two inputs to production – human labour L and physical
capital K – and constant returns to scale.2 (Later we’ll consider the more complicated
task-based model.)

The Cobb Douglas formula for output Y is:

𝑌 = 𝐾α𝐿1−α

gives the fraction of output paid to capital.3 Similarly, labour’s exponent gives the0 < α < 1
fraction of output paid to labour. Also, the larger an input’s exponent, the more doubling that
input increases the output.4 For these two reasons, an input’s exponent can be thought of as
quantifying ‘how important’ the input is to production.

In this simple two-input setting, we can ask the following question about bottlenecks: If one input
remained fixed while the second increased without limit, would the first input “bottleneck”
output? More precisely, would there be a ceiling on output that isn’t exceeded no matter how
large the second input becomes?

Let’s imagine holding K fixed while increasing L without limit. What happens to output? Here’s
the graph:

4 If you double K, Y increases by a factor of 2^alpha; so the larger K’s exponent, the larger the effect on Y.

3 In a task-based Cobb Douglas model it also gives the fraction of tasks performed by capital, but it need
not have this interpretation. (Not all Cobb Douglas models are task-based.)

2 Constant returns to scale means that when you double both inputs, output exactly doubles.

https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
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Well, there are diminishing returns to more labour. Each extra worker increases output by less
than the previous one. You can see that because the slope is becoming shallower.

However, there is no ceiling on output as labour becomes higher and higher. Even with a fixed
amount of capital, if we have enough labour we can achieve any level of output. This can be

seen directly from the formula : each time you double L you multiply Y by a factor of𝑌 = 𝐾α𝐿1−α

. If you double L enough times, Y can get as high as you like.21−α

It can also be seen from a log-log plot of the same graph.
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If we imagine this straight line going on forever to the right (as we increase L), every level of
output is eventually reached. So there is no ceiling on total output caused by holding K fixed at
1. In this sense, output cannot by “bottlenecked” by K having a low value.

In this example we held K fixed and increased L; but we’d have got the same result if we had
done the reverse.

A popular generalisation of the Cobb Douglas production function is a CES production function.
For modelling bottlenecks, we should use a version of the CES production function where
labour and capital are complements (as opposed to substitutes).5 Intuitively, this means that
they perform different functions both of which are needed. For example, fast transport requires
both vehicles to travel in (capital) and people to drive the vehicles (labour); both the vehicles
and people are needed. Henceforth I’ll refer to the version of CES where inputs are
complements simply at “CES”.

The formula for the CES production function is hard to interpret, so I won’t include it here.

Instead, I will describe the key difference with the Cobb Douglas formula ( ):𝑌 = 𝐾α𝐿1−α

As L / K increases, the exponent on L falls and the exponent on K increases.

Intuitively: the more plentiful an input (compared to other inputs), the less important that input is
to production (as quantified by its exponent). As L becomes plentiful, its importance decreases.

5 Formally, this corresponds to the elasticity of substitution between labour and capital being <1. And
(equivalently) to the parameter rho < 0.

https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution#CES_production_function
https://docs.google.com/document/d/1oAEJiSu9S26tQVys8N0_RhzWh0VkPm5NbrTOviMxLSU/edit
https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution#CES_production_function
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And conversely: the more scarce an input (compared to other inputs), the more important that
input is to production. As K becomes scarce (compared to L), its importance increases.

For example, suppose you want to transport as many people as possible, and you have 100
cars but only 10 drivers. The people are scarce and so you will value them much more highly.
You would rather double the number of drivers than double the number of cars (this corresponds
to “drivers” having a higher exponent than “cars” in your formula for “total transportation
output”). But if you had 100 drivers and 10 cars the situation would be reversed: you’d rather
double the number of cars than drivers (and so you’d have a higher exponent on “cars” than
“drivers”). This is a situation where the importance of inputs depends strongly on their scarcity,
such that you’d use a CES function rather than a Cobb Douglas. (In Cobb Douglas, you
preference for doubling the number of cars vs drivers would not depend on their relative
scarcity.)

Let’s ask CES the same question as we asked for Cobb Douglas. If one input remained fixed
while the second increased without limit, would the first input “bottleneck” output? More
precisely, would there be a ceiling on output that isn’t exceeded no matter how large the second
input becomes?

We can plot the same graph as before. We hold K fixed while increasing L without limit, and look
at what happens to output Y.

6

6 Alpha gives the exponent on K when L / K = 1. Rho describes the rate at which the exponent on K rises
as L / K increases.
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Again, there are diminishing returns, but they diminish more steeply. And, importantly, this time
there is a hard “bottleneck”. It turns out that output never rises above 4, no matter how large L
becomes. You can see this on a log-log plot of the same graph.7 (Recall that this plot showed a
straight line in the Cobb Douglas case.)

Note, in this example the “bottleneck” is capping the GDP that can ever be obtained, because
we’re considering the direct production of goods and services (holding the level of technology
fixed). But in the case of R&D the “bottleneck” would cap the amount of R&D progress that
could be made each year, i.e. it would cap the rate of GDP growth. I’m modelling both kinds of
bottlenecks: bottlenecks to how large GDP can become due to AIs providing goods and
services while holding the level of technology fixed, and bottlenecks to the rate of (hardware and
software) R&D progress.8

In the above example, the fixed value of K = 1 placed a hard ceiling on output of Y = 4. The
exact value of the ceiling depends on the degree of substitutability between L and K. If they are
not at all substitutable, the ceiling is low. If they are somewhat substitutable, the ceiling is higher.
(And once they are as substitutable as in Cobb Douglas, there is no ceiling.9)

The degree of substitutability is quantified by the variable . The higher , the more substitutableρ ρ
the inputs are. Cobb Douglas corresponds to , and the bottleneck dynamic occurs ifρ = 0

9 In fact, if you are ever so slightly less substitutable than Cobb Douglas, there is a ceiling.
8 As discussed above, I’m currently not modelling AI automation of generic R&D.

7 Mathematically, there is a hard bottleneck because as L / K tends to infinity, the exponent on L tends to
0 (while the exponent on K tends to 1). In this limit, increasing L makes no difference to output at all.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.iraaxkfxgljb
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We can quantify what the ceiling on output is using . If initially Y = 1 and capital’s shareρ < 0. ρ

of output equals ,10 then as L tends to infinity output tends to a ceiling of .α (1/α)1/−ρ

The current capital share is , which implies the following ceilings on Y as L tends toα = ~0. 35
infinity (holding K fixed).

ρ Ceiling on Y as L → ∞ (initially Y=1)

-2 1.6

-0.5 6.3

-0.2 98

0 (Cobb Douglas) inf

> 0 (Labour and capital are substitutes, not
complements)

inf

A task-based model
Above we looked at a simple CES model with two inputs and studied its “bottlenecking”
dynamic.

A very similar dynamic exists for task-based models. In task based models, each task is
considered to be a separate input to production.11 Each task is performed by labour, physical
capital or compute.12

The same dynamic that existed between the two inputs in the previous model exists between
every task in this model. This time, quantifies the degree of substitutability between tasks,ρ
rather than between labour and capital. This means that:

● In Cobb Douglas versions of the task-based model, if we hold inputs to some tasks fixed
while inputs to other tasks rise without limit then total output rises without limit.

● In the CES versions of the task-based model, if we hold inputs to some tasks fixed while
inputs to other tasks rise without limit then there is a ceiling on output.

12 Recapping section 5: In the FTM a constant fraction of tasks is always performed by capital, a small
fraction is initially performed by compute, and the remainder is initially performed by labour. Then over
time larger training runs allow more and more tasks to be performed by compute.

11 We can think of each task i as having an exponent e_i which quantifies its importance to production. As
before, the exponent e has two meanings: first, e_i equals the fraction of output paid to inputs performing
task i; second, increasing the output of task i by 1% increases total output by e_i%. As before, e_i
decreases (/increases) if the inputs to task i becomes more abundant (/scarce) compared to other tasks.
If inputs to task i rise without limit, e_i tends towards 0; i.e. they stop mattering for economic production.

10 Recall this is the share of output used to rent capital (as opposed to paying wages).
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○ The larger the fraction of tasks that rise without limit,13 the larger the ceiling on
output.

■ In fact the formula is the same as in the two input model: if the fraction of
tasks that are held fixed equals , and the other tasks rise without limit,α

then output increases by a factor of before hitting the ceiling.(1/α)1/−ρ

The following table14 assumes (so is CES) and looks at how the ceiling depends onρ =  − 0. 5
the fraction of tasks that rise without limit (while inputs to the other tasks remain fixed).

Fraction of tasks that rise without limit Ceiling on Y

1% 1.02

10% 1.2

20% 1.6

50% 4

80% 25

90% 100

99% 10,000

100% inf

With this value of , increasing output of half the tasks to infinity only raises total output by 4X.ρ
Why? Past a certain point, more and better performance of those tasks simply isn’t helpful;
we’re bottlenecked by other tasks (whose performance is being held fixed).

I’ve talked here about a ceiling on output GDP, while holding the level of technology fixed. But
the same economic models can be applied to R&D. In this case, the ceiling is on the rate of
R&D progress,15 rather than on Y.

15 Strictly speaking, the ceiling is on the ‘total R&D input’, rather than the ‘rate of progress’. The way the
model works is: inputs of labour, capital and compute are used on various tasks → they combine together
to make a total R&D input → this total R&D input causes R&D progress. But if total R&D input is constant
over time then R&D progress actually slows, due to ideas getting harder to find.

14 Calcs.

13 Tasks are weighted by their 2022 output share: the fraction of 2022 output paid to the inputs that
perform that task. For example, if the labour share is 0.65 and workers spend 10% of their time on a
particular task, that task’s output share is 0.065. So, the “fraction tasks that rise without limit” is simply
shorthand for “the fraction of current output paid to tasks whose inputs rise without limit”. I specify the
current year 2022 because the output share of a task increases (/decreases) if its inputs become more
scarce (/plentiful) compared to other tasks.

https://docs.google.com/spreadsheets/d/1jlfEm9yqLCd_5E696fpI_koGapTv6sRD_rwcYBDu5kY/edit#gid=741521065
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What’s the link with takeoff speeds?
Why am I imagining some tasks rising without limit, while others remain fixed? Because as we
approach AGI, the amount of 2020-FLOP will increase very rapidly and so tasks that
disembodied AIs can perform will have their inputs increase very rapidly; meanwhile inputs to
other tasks continue (at least initially) to change at their current slow pace. The limiting
behaviour as AI inputs tend to infinity sheds is relevant to what will happen as the AI inputs
become extremely large.

If we make an assumption about the total fraction of tasks that AIs can perform in a given
domain, and an assumption about , CES models allow us to deduce how much total output ofρ
that domain will increase as AI inputs tend towards infinity. The two key domains are “GDP,
holding the level of technology fixed” and “R&D progress per year”. The second domain roughly
translates to “rate of GDP growth” as R&D drives technological progress and thus GDP
growth.16

So in this CES framework, the strength of the bottlenecks on GDP and R&D progress depend
on the fraction of tasks performed by AI and on .ρ

What fraction of tasks might disembodied AI eventually be able to perform? Earlier, I suggested
that AGI might perform ~50% of tasks in goods and services production (compared to a labour
share of 65% that includes physical labour), ~70% of the tasks in hardware R&D and ~100% of
the tasks in software R&D. The uncertainties are large because i) I haven’t done more than a
quick google to pin down these parameters, and ii) it’s hard to separate the contribution of
“cognitive labour” from that “total labour including manual labour”.

What evidence do we have about ?ρ
There are three buckets of evidence that I’m aware of.

Firstly, there are empirical studies of the substitutability between labour and capital in
particular industries and the economy as a whole. I have not looked into any of these. I asked
Phil Trammell for his opinion and have pasted his reply in a footnote.17 Apparently, the standard

17 Phil says: “I think a standard central guess for the elasticity of substitution between labor and capital is
2/3, which would make 𝜌 = -1/2. I don't remember what papers give what numbers, but here are some
sources:

● Oberfield and Raval (2014): Estimate 𝜌 from data on how individual manufacturing plants
respond to changes in wages and capital rents (i.e. interest rates).

● A bunch of studies cited in the intro of Jones (2003): Antras (2004), Hammermesh (1993),
Krusell, Ohanian, Rios-Rull and Violante (2000), Caselli and Coleman (2000). I’m less familiar
with them, but they use a variety of methods, e.g. international comparisons of K/Y vs. capital
share.

16 Though the Full Takeoff Model doesn’t model AI automation of generic R&D, only hardware and
software R&D.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.osubru9caix
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.myon1lrlwj34
https://www.nber.org/system/files/working_papers/w20452/w20452.pdf
https://www.frbsf.org/economic-research/files/jones_alpha100.pdf
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.iraaxkfxgljb
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value used based on this evidence is - 0.5. (Recall, is Cobb Douglas with noρ = ρ = 0
bottlenecks, and the lower the stronger the bottleneck. So - 0.5 corresponds to a fairlyρ ρ =
mild bottleneck.)

In addition to the usual uncertainties with this type of empirical work,18 there are two additional
uncertainties:

● Extrapolating to a scenario with huge AI inputs. The evidence for these studies is the
minor variations in (e.g.) capital intensity that have occurred in recent decades, but this
is very different to a scenario in which AI inputs are doubling every 6 months or faster. To
make predictions about the AI scenario, we essentially have to extrapolate out the
evidence from minor variations between different inputs to a scenario with huge
variations between different inputs. I basically don’t trust these studies at all to make
good predictions about this type of scenario.

● Extrapolating from “labour tasks vs capital tasks” to other “AI vs non-AI”. From the
perspective of the task-based model, these studies estimate the substitutability between
‘tasks performed by labour’ and ‘tasks performed by capital’. But, conceivably, this might
be different from the substitutability between cognitive tasks and non-cognitive tasks
(which include both tasks done by both capital and physical labour). In particular, you
might think physical labour is better able to substitute for capital than pure cognitive
labour, suggesting a lower value of for cognitive vs non-cognitive tasks. And thisρ
(potentially) lower value is the one we’re interested in, as disembodied AI will only
automate cognitive tasks.

One last thing about this first bucket of evidence. Longer run studies tend to find higher values
of – sometimes as high as 0 (which is the Cobb Douglas case).19 Jones (2003) ventures anρ
interesting hypothesis as to why. Suppose we have a sudden influx of AIs. Jones’ hypothesis is
that in the short run we can’t effectively use all these AIs in production without getting
bottlenecked by our lack of (e.g.) physical capital; so output is bottlenecked and is low. But inρ
the longer run we invent new production processes that use our new balance of inputs more

19 [Rabbit hole-y fn.] For example, the simple fact that L/K has decreased significantly over recent
decades, yet the capital share has stayed ~constant, naively suggests that rho = ~0. From the
perspective of a CES task based model, however, this isn’t convincing because we have automated tasks
over recent decades and the CES model predicts that this increases the capital share. This automation
can counteract the decrease in L/K.

18 E.g. “Were the statistical techniques used successfully able to pin down the parameter in the narrow
setting of the study, given that many potentially-relevant factors that are hard to control for”, “Do the
results from the narrow setting generalise to the economy more broadly?”.

● Chirinko and Mallick (2017): Responding to some of the criticisms about short- vs. long-run 𝜌
(as we've discussed coming from Piketty), they look at a long-run data set and see whether
periods of growth in K/Y (in the US as a whole or by industry) were associated with subsequent
increases or decreases in the capital share. (Though these long-run correlations are tricky.)
They estimate 𝜌 a bit closer to 0 after allowing for long-run adjustments, but still negative.

None of these are for task-based models in particular, as far as I can recall, but presumably the
economy-wide (as opposed to firm- or industry-specific) estimates should be the same whether or not you
write down your model as just being CES overall or broken up into a bunch of tasks."

https://www.frbsf.org/economic-research/files/jones_alpha100.pdf
https://www.jstor.org/stable/pdf/26528416.pdf?ab_segments=0%252FSYC-5770%252Ftest&refreqid=excelsior%3A5723b2dc28af6cb16048219e7dff9e69
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effectively, e.g. finding a way to produce the things we need using lots of AIs and limited
physical capital; this relieves the bottleneck and becomes higher. On this view, bottlenecks areρ
a short-term phenomenon and Cobb Douglas, meaning and no bottlenecks, is accurateρ = 0
over longer timescales.20

Secondly, there is a variety of evidence suggesting that . In particular, there’s strongρ < 0
evidence that “when a task in the economy becomes more productive (relative to other tasks),
its fraction of GDP declines”. This implies that .21 (Why? Recall that the the fraction ofρ < 0
GDP paid to perform a task is quantified by the task’s exponent, task exponents are constant in
Cobb Douglas ( ), but when the exponent declines as the task becomes moreρ = 0 ρ < 0
abundant.)

Examples:
● Agriculture used to be a large fraction of GDP (hundreds of years ago). As its

productivity and output surged, its share of GDP fell. It’s now 5% of US GDP. Past a
certain point, we just don’t want more food. As it becomes more abundant, we spend a
lower fraction of our resources on it.

● Manufacturing industries have on average enjoyed larger productivity gains than
services industries. Yet their share of GDP has declined across the same period. Again,
as manufactured goods become more plentiful, we spend a lower fraction of our
resources on them.

● FLOP. Tasks that people used to pay lots of $ for computers to perform are now dirt
cheap. I expect that the fraction of GDP spent on these tasks has fallen dramatically,
even as our ability to perform them productivity has skyrocketed (with rising FLOP/$).

One confusing thing with interpreting this second bucket of evidence, that I don’t feel satisfied
with, is teasing apart demand and supply effects. The above examples seem to relate to
demand: as we produce more of product X, we spend a smaller fraction of GDP on it. But,
especially when imagining AI doing R&D or increasing military power, I’m more concerned with
supply. That is: if we want more of Y (GDP / R&D progress / military power), does the
importance of sub-tasks to achieving Y fall as we perform those tasks more/better?22 It seems
possible that, despite these demand effects, there are some tasks for accelerating R&D, or
gaining power, that would remain important even as AI performs them much more/better.

22 This coincides with the demand effect when we define Y as “satisfying people’s demands for goods and
services”.

21 It may be possible to use this kind of data to estimate the exact value of rho, rather than merely its sign.
I’m not aware of studies of this kind.

20 A temporary bottleneck could still prevent fast takeoff, if it takes decades for it to be removed. The key
question is: What ‘causes’ the bottleneck to be removed over time? If it is cognitive labour designing new
production processes, then AIs can do that quickly and remove the bottleneck to their own economic
impact. If it is instead schlep integrating AIs in the economy, then AIs may not be able to remove their
own bottleneck.

https://www.ers.usda.gov/data-products/ag-and-food-statistics-charting-the-essentials/ag-and-food-sectors-and-the-economy/#:~:text=What%20is%20agriculture's%20share%20of,about%200.6%20percent%20of%20GDP.
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Overall, I think this bucket gives good evidence that is noticeably below 0 for GDP,23 i.e. whenρ
considering different tasks for producing goods and services that people want to buy. I think it
also gives some reason to believe that “as AI inputs rise dramatically, the tasks that they can
perform will become less important to R&D, military power, and other strategic domains”.

The third bucket of ‘evidence’ is simply doing inside-view thought experiments about
what you think would happen in a world with zillions of AGIs working on (e.g.) hardware
R&D.24 How much more quickly could they improve chip designs than we are currently, despite
having access to the same fixed supply of physical machinery to use for experiments? If you
think that hardware progress would be 100X its current pace, you can use this to “back out” a
value of consistent with that. This type of thought experiment gets at for cognitive tasks vsρ ρ
non-cognitive tasks. Or you could run the thought experiment for software R&D or GDP
(imagining zillions of AGIs producing goods and services, holding fixed the physical machinery).

[How could you “back this out”? Recall that if AI can perform a fraction of value-weighted1 −  α

tasks then, as AI inputs tend to infinity, output increases by a factor of . So if you think(1/α)1/−ρ

hardware progress would be 100X its current pace in this hypothetical, you’re estimating that

equals 100. If you also have an estimate of you can “back out” an estimate of .25](1/α)1/−ρ α ρ

Doing this kind of inside-view thought experiment gets into lots of tricky issues like “Could you
replace physical experiments with simulations?” and “How many experiments would be needed
for a smart enough team of AIs to discover nanotech and use it to design better chips?”. These
questions are, I think, worthy of much more investigation. It would be useful to think through
specific candidate bottlenecks concretely and assess how much they would slow down
progress.

This third bucket of ‘evidence’ leads me, at least in the case of hardware R&D, to higher
estimates of than the first bucket. If and (as I suggested for hardwareρ ρ =  − 0. 5 α = 0. 3
R&D26), then even zillions of AGIs would only increase the pace of hardware progress by ~10X.
But with billions of AGIs thinking 1000X as fast and optimising every experiment, I think
progress could be at least 20X quicker than today, plausibly 100X. If , a 100X speed upα = 0. 3
implies . I expect some people to favour larger numbers still. Very large numbersρ =− 0. 25
would favour choosing a value of very close to 0 (but still negative27), which wouldρ
approximate Cobb Douglas ( ).ρ = 0

27 If rho isn’t negative, then the rate of R&D progress goes to infinity as the number of AIs doing it tends to
infinity.

26 Recall that alpha gives the fraction of value-weighted tasks performed by physical capital in 2020; it is
the same as the capital share of R&D.

25 If your multiplier on output (from AI inputs going to infinity) was S, rho  = ln(alpha) / ln(S).

24 Or you could do the same thought experiment but have the disembodied AGIs do generic R&D or
directly provide goods and services.

23 By “noticeably below 0” I mean that using Cobb Douglas, where rho = 0, would not give approximately
correct predictions in practice. E.g. I think the evidence here suggests rho < -0.1.
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My instinct is similar for generic R&D, and for military power. Zillions of AGIs thinking 1000X as
fast could, despite a fixed stock of physical equipment, increase your military power by more
than 10X, plausible by 100X. This implies . Again, these are simply my instincts andρ >− 0. 5
this third bucket really deserves a lot of further investigation.

Summing up
I expect AI will increase output on certain tasks by many orders of magnitude compared to
today, while not increasing output on other tasks much at all. How much might total output
(‘GDP holding technology fixed’ / ‘the rate of R&D progress’) increase in this scenario before it is
capped by the tasks not performed by AI?

The task based model gives a tool for answering this.

When (Cobb Douglas) there is no cap on output, output can increase without limit if youρ = 0
have enough AIs. But when ,  output is capped below a ceiling that depends on theρ < 0
fraction of tasks performed by AI and .ρ

All three buckets of evidence about suggest . The first bucket has a central estimate ofρ ρ < 0
-0.5 , but closer to 0 over longer time horizons. The second bucket doesn’t (to my knowledge)
provide precise estimates of , but suggests . The final bucket is fraught andρ ρ < 0
underdeveloped. To my mind, it suggests that, at least for R&D and military power, ρ >− 0. 5
and perhaps very close to 0.

The rest of section 6 discusses how to model bottlenecks specific to software R&D, hardware
R&D, and GDP.

2020-FLOP per FLOP
I’ll discuss two bottlenecks:

1. Human bottlenecks. When AI has automated many but not all cognitive tasks, progress
may be bottlenecked by the non-automated tasks still performed by humans.

2. Physical FLOP bottlenecks. When AI has automated all cognitive tasks, progress may
still be bottlenecked by the time it takes to either i) do large experiments testing new
algorithms or ii) train new (and better) AIs.

Human bottlenecks
In section 5 I calculated that, when AI had automated a fraction f of tasks, software inputs would
grow at f * g(2020-FLOP).

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.dccnuj56k33u
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But this calculation used a Cobb Douglas model that assumed that tasks remain equally
important even when AIs perform them much more/better. In a CES model with , the tasksρ < 0
done by AIs will become less important and so software inputs will rise more slowly.

What value of should we use? In this setting we really care about the degree of substitutabilityρ
between different cognitive tasks. (Recall that all the tasks for software R&D are cognitive, in my
model.) Unfortunately, the evidence discussed above is not directly relevant to this.28

If I think about the tasks involved in software R&D, it does seem like there will be bottlenecks. In
particular, I imagine AIs automating some subset of tasks, and having the ability to do these
tasks to an arbitrarily high speed and quality. It doesn’t seem like the rate of software progress
increases without limit; instead human tasks bottleneck progress.

● Suppose AI automates the process of implementing new algorithms (given a description
in natural language or maths), but humans still have to invent these algorithms. If the
number and quality of AIs able to do this grow without limit, the rate of software progress
is still bottlenecked by the number of humans available to invent new algorithms.

● And vice versa. Suppose AI automates the invention of new algorithms, but humans still
have to implement them. This time it feels like the rate of software progress might
increase more before hitting a ceiling, as AIs could invent new algorithms faster and
invent higher quality algorithms. But eventually progress would be bottlenecked by the
time taken for humans to implement the best algorithms that AIs could invent with the
information available to them.

● More generally, it feels to me like R&D progress often relies on many successive
cognitive tasks being completed, all of which are necessary to make a unit of progress.
(E.g. think of a hypothesis, write it down, implement it, test it, interpret the results, iterate,
write up the results.) This lends itself to bottlenecks as any task can hold up progress.

Overall, I’m really not sure what value of to use here. I’m going with as a centralρ ρ =− 0. 5
estimate; but am open to as high as -0.2 or as low as -2. This is on the lower end suggested by
the evidence discussed previously, because it does seem likely to me that software R&D will
involve some non-negligible bottlenecks if only some tasks are automated. [Interested in
thoughts of ppl with more context on this type of work.]

In section 5, I suggested that AI automation would become more important than rising human
inputs when around 20% of cognitive tasks were automated. How does this change when we
move from Cobb Douglas to ? The analysis in CES is complicated, but after playingρ =− 0. 5
around with the model a little with, my estimate is that AI automation becomes more important
than rising human inputs only when around ~40% of cognitive tasks are automated.

28 In particular, bucket 1 related to labour tasks vs capital tasks, bucket 3 to cognitive vs non-cognitive
tasks, and bucket 2 was about the substitutability of different sectors of the economy for GDP. None of
these really speak closely to the substitutability between different cognitive tasks.
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Another way to ‘grok’ the effects of partial software automation, that’s probably more useful, is to
ask: if we automated x% of software R&D tasks, and AI inputs to those tasks were very high29

(such that we hit the human bottleneck30), how many times faster would software progress be
(compared to if we automated 0% of tasks)?

The following table shows this for three values of .31ρ

Fraction of software R&D tasks
automated with very high AI
inputs

How many times faster could software progress be
(compared to automating 0% of tasks)?

ρ =− 1 ρ =− 0. 5 32ρ =− 0. 25

10% 1.1 1.2 1.5

20% 1.25 1.6 2.4

50% 2 4 16

80% 5 25 625

90% 10 100 10,000

Physical FLOP bottlenecks: experiments
The human bottleneck discussed above stops applying once AI can perform all cognitive tasks
(i.e. once we have AGI). At this point, it might seem like AI can perform all the work necessary
for software R&D, and so there will be no more bottlenecks. However, one important part of AI
software R&D today is simply doing experiments and seeing what works. While researchers
may have reasons to think a new algorithm will have a particular effect (e.g. based on a priori

32 I think we’re less likely to approach these limits than for the other two columns in this table, even if rho
has this value. This is because we’d need to run many more AIs on each task to approach the human
bottleneck.

31 A hacky way to generate an equivalent table for hardware R&D would be to divide the percentages in
the left column by 0.7, i.e. multiply them by 1.4. (0.7 is the fraction of hardware R&D tasks done by
cognitive labour.) This hack is accurate if, for hardware R&D, rho = -0.5 between different cognitive tasks
and rho = 0 between physical capital and cognitive labour. Below I settle on -0.25 for the latter quantity,
which reduces the impact of automation.

30 As described above, as AI inputs tend towards infinity, the rate of R&D progress approaches a ceiling
due to the limited human inputs to the remaining tasks. This ceiling can be expressed multiple higher than
if humans performed all the tasks

29 In practice, I expect the actual rate of progress will not be too far from these limits. Once we have
enough compute to train an AI that automates x% of tasks, we typically already have enough compute to
run many millions or billions of copies. This is especially true if medium or long horizons are required for
training. There are a fairly small number of human researchers doing software R&D (currently < 100,000),
so it should be possible to run enough AIs that AI per-task inputs are much higher (~100X) than human
per-task inputs. If it’s possible, it will likely happen because after “wake up” the demand for increased
inputs to software R&D will be high. If AI per-task inputs are ~100X higher than human inputs then, for
low values of rho (rho < -0.5), overall software progress is close to the maximum at the bottleneck.
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mathematical arguments or intuitions developed from previous experiments), these results have
to be demonstrated in practice (e.g. by achieving good performance on pre-existing
benchmarks) before new algorithms are published. And it’s not always possible to predict the
results in advance.33

Here’s a simple model in which this bottlenecks software progress.
● Software R&D has two stages: Design and Test. In the Design stage new algorithms are

designed and implemented; in the Test stage their performance is tested. The test
results are used to design the next algorithms.

● The speed of Design is proportional to 2020-FLOP/s used for software R&D (as in our
model from the last section).

● The speed of Test is proportional to the physical FLOP/s used for testing.34

Suppose that, absent the Test stage, there would be a software-only singularity, with each
doubling of 2020-FLOP per FLOP faster than the last even with a fixed amount of physical
FLOP/s. AIs designing better AIs, which design better AIs, in an explosive loop. The Test stage
would bottleneck this process as it cannot be sped up while using a fixed amount of physical
FLOP/s.

This bottleneck may prevent a software singularity happening, or may place a limit on how fast
software doublings can become, during a temporary35 software-only singularity.

A related possibility is that historical software progress has relied on our algorithms using
increasingly large amounts of compute during training and runtime, as new hardware scales
opened up the possibility for new types of software innovations. This would have a similar
implication: software progress would be limited by the rate at which we accumulate physical
FLOP/s. More.

The FTM assumes the computational experiments have a share of software R&D of 30%, with
70% going to cognitive tasks. The 30% matches our previous assumption about capital’s share
of hardware R&D. I use to approximate a Cobb Douglas production function withoutρ =− 0. 01
hard bottlenecks, because I don’t expect a fixed supply of physical FLOp for experiments to put
a hard cap on the rate of software progress.

35 By “temporary software singularity” I mean that after a while the software doublings slow down over
time: each takes longer to happen than the last. More specifically: there are >=2 doublings of 2020-FLOP
per FLOP, each (at least slightly) faster than the last and happening on a ~fixed base of physical FLOP/s,
and then doublings slow down over time.

34 Why can’t the AIs design more efficient tests? In some cases they may be able to. E.g. if they design a
new algorithm to do the same task faster, their tests may get faster. But in some cases this may not be
possible. E.g. if they design a new algorithm that uses the same physical FLOP/s but is smarter. The new
algorithm uses just as much physical FLOP/s as the previous, so takes just as long to test. It’s this second
kind of test I’m saying could be a bottleneck.

33 E.g. it’s my impression that some people were surprised by how well simple algorithms have been able
to solve certain tasks once they have enough data, compared to more complex algorithms that were
specialised to perform that very task.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.89h04ai7mpg3
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.limc1xpm5tfc
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.limc1xpm5tfc
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This concludes discussion of the bottlenecks to software R&D; the next section briefly examines
the bottlenecks for hardware R&D.

FLOP/$
I think there are three main bottlenecks to hardware R&D: human bottlenecks, physical capital
bottlenecks and delays to printing new chips. I discuss each in turn.

Human bottlenecks
These are bottlenecks from unautomated cognitive tasks that must still be performed by a
limited number of humans. They occur when AI has automated some but not all cognitive tasks.

This can be modelled just as in the case of software R&D. Again, my best guess central
estimate is to use as the parameter describing substitutability between differentρ =− 0. 5
cognitive tasks.36 This table describes the bottleneck this places on overall cognitive output, if
AI automates various fractions of cognitive tasks.

Bottlenecks from physical capital.
This bottleneck becomes significant once AI has significantly increased total output on cognitive
tasks for hardware R&D. This happens after full automation of cognitive tasks but also before
this point, when AI automates a large enough fraction of cognitive tasks that overall cognitive
output has become very large. (E.g. if AI automates 90% of cognitive tasks, with all humans
concentrated on the remaining 10%, this boosts total cognitive output by at least 10X, probably
more due to more/better performance of the other 90% by AIs.)

Note, in the FTM “physical capital” includes the non-cognitive elements of manual labour. (E.g.
for a plumber there’s the cognitive task of deciding how to solve the problem step by step, the
cognitive task of sending instructions for implementing this solving, then the “pure manual
labour” task of actually physically solving the problem. A disembodied AI might tele-advise a
plumber, or teleoperate a robot-plumber, but it can’t do the “pure manual labour” element of the
task of plumbing.)

This is about the substitutability between cognitive labour and physical capital.37 This could be
different to that between different cognitive tasks. So while I’ll use for theρ =− 0. 5
substitutability between cognitive tasks, I’ll choose another value of for the substitutabilityρ
between cognitive labour and physical capital.

37 Or, in the language of the task-based model, substitutability between the collection of tasks performed
by cognitive labour (AI or human) and the collection of tasks performed by physical capital.

36 In particular, the FTM calculates the combined output of all cognitive tasks as a CES function of the
inputs to each cognitive task, with rho < -0.
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What should we think about this ?ρ

Above I discussed the third ‘bucket of evidence’ about bottlenecks: if there were zillions of AGIs
doing hardware R&D, but they had to use current physical machinery for experiments, how
much faster could they advance hardware R&D compared to the current rate?38 The following
table shows how your answer determines , assuming that the current capital share of R&D isρ
30%.39

How much could zillions of AGIs accelerate hardware progress with
current physical capital?

ρ

10 -0.5

20 -0.4

50 -0.3

100 -0.25

1000 -0.17

10,000 -0.13

Based on this table, my very tentative central estimate of would be -0.25, with a conservativeρ
guess at -0.5 and an aggressive guess of -0.17. This is broadly consistent with evidence from
bucket 2 (which supported but didn’t provide a specific estimate) and bucket 1 (whichρ < 0
suggested for certain industries but closer to 0 over longer periods of time). I thinkρ =− 0. 5 ρ
the best next steps on making this less made-up would be to look more concretely at how
hardware R&D works and what necessary bottlenecks are imposed by the need to conduct
physical experiments and wait for the results.

The following graph shows the behaviour of my central estimate and my aggressive and
conservative guesses. In particular, it shows how the pace of R&D progress varies with the total
cognitive inputs to R&D.

39 Calcs.

38 This leaves it ambiguous whether the AGIs have access to unlimited compute for running simulations.
In the FTM, the potential importance of simulations for hardware R&D is not modelled. In practice, then
around and shortly after AGI there will be a fair bit of computation available for simulations like this.
(They’ll be at least the compute needed to train AGI, and there will be strong incentives to use compute
for hardware R&D.) But there won’t be ~infinite computation sitting around. So probably the best thing to
imagine for this thought experiment, is “you have a decent amount of compute for simulations, but not an
insane amount so you can’t just brute force things”.

https://docs.google.com/spreadsheets/d/1jlfEm9yqLCd_5E696fpI_koGapTv6sRD_rwcYBDu5kY/edit#gid=1052914534
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40

The x axis gives total cognitive input to R&D, varying from today’s inputs on the far left to 1
billion times today’s inputs (“1e9”). One way to imagine increasing cognitive inputs by (e.g.) 10X
is to imagine all the current R&D researchers think 10X as quickly.41 The y axis shows how
much faster R&D progress is, compared with if we were still using today’s cognitive inputs.

So, for example, the yellow line suggests that if today’s hardware R&D researchers could think
10X as quickly (but had access to the same physical capital) hardware progress would be 5X
faster. If they could think 1000X as quickly, progress would be 50X faster. And if they could think
10 million times as quickly (1e7), progress would be 500X faster.

I include these graphs to give readers a sense of how assumptions about translate intoρ
predictions about the pace of R&D progress as we ramp up cognitive inputs (via AI) but leave
physical inputs constant.

One last thing on bottlenecks from physical capital. I’ve focussed on how severe the bottlenecks
here might be if we have huge AI inputs but the amount of physical capital is growing much
more slowly by comparison. But one way to avoid these bottlenecks is to very quickly increase
the amount of physical capital (e.g. by quickly building more specialised machinery and robots

41 You shouldn’t imagine doubling the number of researchers as i) there are “stepping on toes” effects as
2X as many researchers are harder to coordinate (e.g. more duplicated research) and so don’t produce
2X cognitive output, and ii) you would be duplicating the number of physical bodies that can run
experiments (which should be held constant).

40 Calcs.

https://docs.google.com/spreadsheets/d/1uLkB0FoI_lHbec_Nc0cPNKllzc_iLpYZpzpvV8MArcU/edit#gid=847980556
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to conduct experiments). I haven’t thought much about this side of the equation. Here are some
very brief and incomplete thoughts:

● A crucial input into making more physical capital is physical capital itself. Most machines
are made with the help of other machines. While plentiful cognitive labour can optimise
the process of constructing physical capital, there will be limits to this. The process will
be bottlenecked by the already-existing physical capital and physical labour. This makes
it at least plausible that the bottleneck here could be slow to resolve.

● In the case of hardware R&D, it may be possible to quickly reappropriate physical capital
from other areas of the economy. (Either machines used directly on hardware R&D, or
machines that can make machines used in hardware R&D.)

○ E.g. Carl believes that car factories currently could be refitted to produce robots
without too much difficulty. Disembodied AIs could control these robots remotely
to do experiments for R&D.

○ Of course, this is only possible if AIs can quickly design sufficiently good robots.
● Given the fast growth of 2020-FLOP around AGI, it does seem very likely that physical

capital will be growing much slower and therefore be a bottleneck.
● I don’t trust the FTM’s assumptions about physical capital growth around and after AGI,

and think they probably underestimate the growth of the relevant kinds of physical
capital. More.

Lags from hardware R&D to having new chips.
I have already briefly discussed this bottleneck. The (physical) FLOP/s that can be done by the
global stock of chips is the result of many years of production. Correspondingly, it would take
several years to produce enough cutting edge chips to match the current global stock of
FLOP/s. One guess is that it would take ~3 years.42

Suppose you design an improved chip that does 2X more FLOP/s than the current SOTA chip.
Even if you start manufacturing it straight away, it will be years before you have significantly
affected the FLOP/s that can be done by chips globally. This creates a lag from “hardware
progress” to “more (physical) FLOP”.

If you need to build a new fab, there will be an additional delay before you even start
manufacturing the new chips.

The FTM models both these delays (more). Huge demand for AI chips, and AI automation, may
reduce both these lags; it would be good to investigate how much they could be reduced with
sufficient demand and sufficient cognitive labour.

42 Data from Bio Anchors suggests FLOP/s per $ grew at 23% from 2008 - 2018. If $ spent on chips each
year grew at 10%, then FLOP/s grew at a rate of 33%. It turns out that, if the FLOP/s from chips produced
each year is growing at 33% then it takes 1 / 33% = 3 years of current production to produce as much as
is global stock.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.154fr1a5qq3r
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.2gnv7nk1tdrv
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.k3lk5zdpuu81
https://docs.google.com/document/d/1z6NFHPhT6heT0N4_WCQhnAuKPCsZ34sWAx51HMhXnbE/edit#heading=h.b8oin0p51ihu
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.l28kd2hk6zj1
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GWP
Recall that I’m assuming the effect of AI automation on $ on FLOP mirrors its effect on GWP. If
GWP growth is boosted from 3% to 5%, g($ on FLOP) is boosted from (e.g.) 22% to 24%.

I think there are three main bottlenecks to GWP: human bottlenecks, physical capital
bottlenecks and other barriers to AI’s economic impact. I discuss each in turn.

Human bottlenecks
This is the same as for software and hardware R&D. When AI has automated some but not all
cognitive tasks, the tasks still done by humans may bottleneck progress. As before, I’m
modelling this using a CES task-based model with . This table describes theρ =− 0. 5
bottleneck this places on overall cognitive output, if AI automates various fractions of cognitive
tasks.

Physical capital bottlenecks
Conceptually, this is the same bottleneck that I discussed above in relation to hardware R&D.

In the case of hardware R&D, my best guess was for the substitutability betweenρ =− 0. 25
cognitive labour and physical capital (vs for the substitutability between differentρ =− 0. 5
cognitive tasks).

There are a few reasons why I think the physical capital bottleneck will apply more strongly for
GWP than for hardware R&D:

● Evidence from bucket 1 (empirical measurements of the substitutability between capital
and labour) and bucket 2 (the observation that when economic sectors become more
productive their share of GDP falls) is more relevant to GWP than to hardware R&D.
They imply stronger bottlenecks (lower ) than (our choice for hardwareρ ρ =− 0. 25
R&D).

○ Bucket 1 suggests = -0.5 in the short run, higher in the longrun.ρ
○ Bucket 2 suggests noticeably lower than 0, but doesn’t give a specific estimateρ

(to my knowledge).
● Evidence from bucket 3 (thoughts experiments about worlds with super-abundant

disembodied AGIs) suggests a stronger bottleneck for GWP than for hardware R&D.
○ For hardware R&D, it seemed plausible that zillions of AGIs could optimise the

experiments done enough to speed up hardware progress by 100X.
○ With GWP, it seems to me like people’s willingness to pay for products that

cognitive labour can provide would dry up long before their incomes increased by
100X.

■ Yes people would enjoy abundant personalised entertainment, medical
advice, any other expert advice, companionship, education, and other
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‘cognitive products’. (We’re putting aside the benefits of faster general
technological progress here; just focussing on the role of abundant AGIs
in directly delivering goods and services.)

■ But many things that people want involve interaction with physical objects:
e.g. housing, travel, food, material goods. Without improvements in these
things, I’d guess that the income gains from cognitive products would be
limited at a low multiple of their current income.

■ My strong suspicion is that the economists who reviewed my GWP report
would agree.

■ If the fraction of value-weighted tasks performed by cognitive labour is
0.5, as I assumed earlier, then implies this multiple equals 4.43ρ =− 0. 5
This does seem too a little low to me; maybe I’d have said ~10, which
corresponds to .44ρ =− 0. 3

■ If AIs created really awesome virtual worlds, and people were happy to
live in them, then perhaps the gains could be much much bigger. But this
requires technological progress which I’m putting aside.

Whatever value of we choose for GWP will also apply to $ on FLOP, as I’m assuming AIρ
automation affects both in the same way. Recall, I’m interpreting “$ on FLOP” as roughly
meaning “the number of chips”. So the thought experiment here is: with constant physical
equipment how much could zillions of AGIs increase the number of chips produced (holding
fixed the chip quality)? Again, a fairly low multiple seems reasonable here.

Overall, my best guess here would be ,  for the substitutability between cognitiveρ =− 0. 4
labour and physical capital in the production of goods and services.

Other barriers to AI’s economic impact
There are other reasons why abundant disembodied AGIs might (at least initially) have only a
limited economic impact.

● Regulations might prevent or delay AI rolling out into the economy.
● Incumbent labourers might resist being replaced by AI workers.
● People might distrust AI workers.
● … other things

I’m not modelling these bottlenecks. This is a reason to expect the economic impacts of AI
systems to be delayed relative to my forecasts. This could make takeoff faster or slower,
depending on the takeoff metric used and various empirical factors. I discuss this more in
section 8.

44 Rho = ln(alpha) / ln(ceiling) = ln(0.5) / ln(10) = 0.3.

43 Recall that the ceiling on output equals (1 / alpha)^(1 / -rho). In this case alpha = 0.5 and rho = -0.5. So
the ceiling equals 2^2 = 4.

https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth#AppendixH
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.osubru9caix
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.ian0o72itgcn
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.ian0o72itgcn
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I expect these bottlenecks to apply more strongly for jobs where AIs would be directly providing
goods and services to humans, compared with R&D. My impression is that R&D is harder to
monitor and regulate, and not interacting directly with human customers would remove certain
problems. This is why I haven’t highlighted this type of bottleneck for R&D.

Similarly, I expect these bottlenecks to apply less strongly to the early stages of the production
process (e.g. extracting raw materials, combining them together to make intermediate products,
combining and transporting intermediate products). This includes most of the stages in the
production of computer chips, e.g. building fabs, making the inputs needed by fabs, making
computer chips, transporting them.

This suggests that these bottlenecks may apply less strongly to $ on FLOP (~“number of chips”)
than to GWP. So this model may be more trustworthy for $ on FLOP (which feeds into forecasts
of AI capabilities via increasing the largest training run) than for GWP (which is a measure of AI
impact). 45

Summing up
Even if AI inputs are soaring (due to training better systems and running many more copies of
each), output can be bottlenecked by slower-growing non-AI inputs like human workers and
physical capital.

This is true in software R&D, hardware R&D, and in GWP. In section 5 I modelled each of these
three processes using a Cobb Douglas task-based model. To incorporate bottlenecks, I’m
replacing these with CES task-based models. The parameter controls the substitutabilityρ
between different tasks and thus the strength of the bottleneck. In software R&D, hardware
R&D, and GWP I use to represent the human bottleneck from unautomated cognitiveρ =− 0. 5
tasks. In hardware R&D I use as my best guess for the bottleneck from physicalρ =− 0. 25
capital; in GWP I use for this bottleneck.ρ =− 0. 4

The exact implications for takeoff speed metrics are hard to calculate analytically. They depend
on the size of the effective FLOP gap, AGI’s training and runtime requirements, and the speed
at which human investments ramp-up. To address this shortcoming, the next section looks at
takeoff dynamics in some example scenarios and then section 8 conducts a sensitivity analysis.

45 Because of differences like these between $ on FLOP (~”number of chips”) and GWP, the FTM would
ideally model bottlenecks separately for both. (This would also allow it to model advanced AI as being
disproportionately concentrated on increasing $ on FLOP, rather than assuming they impact all areas of
the economy equally. Though FTM does assume advanced AIs are disproportionately concentrated on
hardware and software R&D.)
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7. Sensitivity analysis
The important takeaways from this section are included in the long summary. I most
recommend reading the discussion of trading off training and runtime compute, and
perhaps my walk-through of the dynamics in the ‘best guess scenario’.

Thank you to Jaime Sevilla and the team at Epoch for extensive support with this sensitivity
analysis.

We performed a few types of sensitivity analysis.
● Scenario analysis. We analyse the takeoff trajectories of the Full Takeoff Model (FTM)

for conditioning on AGI training requirements being 1e30 2020-FLOP vs 1e36
2020-FLOP to train AGI vs 1e42 2020-FLOP to train AGI. In each case we consider a
best-guess, conservative and aggressive takeoff, resulting in nine deterministic
scenarios.

● Timelines analysis. The prior analyses focus on takeoff speeds, this one focuses on the
best-guess implications for AI timelines. Timelines are shorter than Bio Anchors by ~5 -
10 years.

○ Timelines are shorter still, by an additional ~5 years, in a variant of the FTM in
which more runtime compute can “substitute” for a lack of training compute,
allowing you to automate tasks with smaller training runs.

● Monte Carlo analysis. We perform 10,000 simulation runs, each time randomly
sampling each parameter. We present summary statistics but do not inspect all the
simulations to understand what’s driving the results as in the scenario analysis.

● Parameter importance analysis. We varied each parameter from its conservative to its
aggressive value, and looked at how this affects takeoff speed.

Assumptions
● Initial growth of AI inputs are chosen to match recent history. E.g. I initially forecast real $

on software R&D will grow at 20%, matching its recent growth rate.
● At a certain point, AI readily automates enough economically valuable tasks that “wake

up” is triggered.46 Then the best-guess, conservative and aggressive growth rates
correspond to those in section 4.

● Best-guess assumptions about bottlenecks from humans and physical capital are as
discussed in section 6.

46 This always happens at 6% of value-weighted cognitive tasks in goods and services production, except
in the Monte Carlo simulation where it can vary from 1% to 20%.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.1v8m5dp6xefi
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.qop7bp60bukb
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● Assumptions about the effective FLOP gap match those from section 3, with the
constraint that the effective FLOP gap cannot be so large that we predict AI can already
readily automate >1% of value-weighted cognitive tasks.47 48

See full list of assumptions and results here.

Scenario analysis
A full list of assumptions and outputs for all scenarios is here.

What’s the takeoff trajectory with my best-guess inputs? This table summarises the answer
conditioning on three assumptions about AGI training requirements.

Takeoff speed49

FLOP to train
AGI using 2020
algorithms

effective
FLOP gap50

(OOMs)

Years from “AI can readily automate 20% of cognitive
tasks” to “AI can readily automate 100% of cognitive tasks”

1e30 2 ~3

1e36 4 ~5

1e42 7 ~16

Below I additionally consider “aggressive” and “conservative” scenarios. In aggressive
scenarios, all parameters take their aggressive (faster takeoff) values; in conservative
scenarios, all parameters take their conservative values. These scenarios feel extreme to me,
as many ~independent parameters conspire to make takeoff slow / fast.51 I’d put <1% on the
parameters turning out similarly extreme as the conservative scenario, and similarly for the
aggressive scenario. Of course there’s model uncertainty in addition to this.

The main takeaways from considering these additional scenarios:
● Takeoff takes ~5X longer in conservative scenarios than in best-guess scenarios mostly

due to i) can’t cross the effective FLOP gap by increasing the fraction of FLOP used in
the largest training run ii) worse returns to software and hardware R&D.

51 In particular, the effective FLOP gap, AGI training requirements, R&D returns, R&D investments (which
are somewhat related to returns), bottlenecks from physical capital, delays to manufacturing new chip
designs, quantity of global FLOP/s produced annually in 2022. OTOH, some of these parameters are
significantly more important than others.

50 As above, the startpoint of the effective FLOP gap is “AI can readily perform 20% of cognitive tasks”;
the endpoint is “AI can readily perform 100% of cognitive tasks”, i.e. AGI.

49 I list the results for other takeoff metrics here.

48 The conservative short horizon length scenario violates this constraint, implying that AI can already
readily automate 3% of the cognitive tasks. This was to create a larger effective FLOP gap, and so a
more gradual takeoff.

47 As otherwise AI would be worth more than the ~$50b a year it seems to be currently valued at.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28
https://takeoffspeeds.com/megareport.html
https://takeoffspeeds.com/megareport.html#timelines_analysis
https://takeoffspeeds.com/megareport.html#mc_analysis
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● Takeoff happens within a year in all aggressive scenarios as we rapidly cross the
effective FLOP gap by increasing the fraction of compute used on the largest training run
and automating software R&D.

1e36 2020-FLOP to train AGI
I looked at scenarios where AGI training requirements are 1e36 2020-FLOP, 1 OOM more than
median of Bio Anchors medium-horizon anchor for TAI. I set the other parameters to
best-guess, conservative, and aggressive values to see the range of takeoff speeds.

1e36
2020-FLOP
to train AGI

effective FLOP gap

Takeoff metric52

Years from “AI could readily automate 20% of cognitive
tasks” to “AI could readily automate 100% of cognitive tasks”

Conservative 1e7 27

Best-guess 1e4 5

Aggressive 1e2 0.4

52 I list the results for other takeoff metrics here.

https://takeoffspeeds.com/megareport.html#timelines_analysis-metrics
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Interesting observations:
● In the best-guess and conservative scenarios, there are multiple years after we’ve

~maxed out the fraction of global FLOP on the largest training run before we’re able to
train AGI. During this time AI progress is mostly driven by producing more and better
chips globally.

● In the aggressive scenario the majority of AI progress comes from better software
(algorithms for training AI).

● In the aggressive scenario we mostly cross the gap by quickly increasing the fraction of
chips used in the largest training run.

Walk through of best-guess 1e36 scenario
The best-guess scenario plays out as follows:

● In 2022 the largest training run is ~3e24 2020-FLOP, estimated to cost ~$10m.

https://blog.heim.xyz/palm-training-cost/
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● In 2030 we do a ~3e28 2020-FLOP training run.
○ This is ~4 OOMs increase, with ~2.5 OOMs from more $ spend on training and

~1.5 OOMs from software and hardware progress.
● This isn’t sufficient for big economic impact, and spending grows more slowly until 2037

when there’s a 3e30 2020-FLOP training run.
○ There’s ~1.5 OOMs from software and hardware progress, and ~0.5 from

spending.
○ As a result, AIs can readily automate:

■ 10% of value-weighted tasks in hardware and software R&D and
■ 6% of value-weighted cognitive tasks in the broader economy, which

corresponds to >$1tr of value-add.53

○ This triggers “wake up”, when relevant actors realise the economic and strategic
potential of AI and invest more quickly.

● In 2039 we do a ~1e32 2020-FLOP training run.
○ This is ~1.5 OOMs increase, with ~1 OOMs from more $ spend on training and

~0.5 OOMs from software and hardware progress.
○ AIs have automated ~30% of tasks in hardware and software R&D, and progress

is ~1.5X faster as a result. AIs have also automated ~30% of the broader
economy, accelerating the growth of the AI chip industry by ~2X.

○ These effects of AI automation become more extreme over the following years as
AI automates more tasks.

○ Shortly after this, the fraction of global FLOP on the largest training run hits its
maximum of 10%.54 Further scale-up of training runs happens via increasing
global chip production, improving hardware and improving software.

● In 2044 we do a ~1e36 2020-FLOP training run that is sufficient to train AGI.
○ This is ~1 OOM from more $ spend on training (via scaling up global chip

production), ~1 OOM from better hardware and ~2 OOMs from better software.
○ Software progress becomes extremely fast as we approach 100% automation of

software R&D, such that 1 OOM of software progress happens in the last year
before AGI.

See the full list of assumptions (select “Med timelines - Best guess” from the drop down).

1e30 2020-FLOP to train AGI
I looked at scenarios where AGI training requirements are 1e30 2020-FLOP, the low-end of Bio
Anchors short-horizon anchor.

The key takeaways are:

54 More precisely, we’ll do a training run with as many FLOP as you could get by running 10% of all chips
non-stop for 1 year.

53 Human labour receives ~$50tr a year, 3% of this is $1.5tr.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.7fvn5owzoada
https://takeoffspeeds.com/megareport.html#timelines_analysis-assumptions
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● In the best-guess scenario AGI is trained in 2028 and takeoff takes 1 - 3 years
depending on the metric used. There’s still room to increase the fraction of global FLOP
on the largest training run when we reach AGI, emphasizing the role of scale up in short
timelines scenarios.

● In the conservative scenario AGI is trained around 2034 and takeoff takes 2 - 10 years.
● In the aggressive scenario AGI is trained in 2030 and takeoff takes <1 year.

1e30
2020-FLOP
to train AGI

effective FLOP
gap

Takeoff metric55

Years from “AI could readily automate 20% of cognitive tasks” to
“AI could readily automate 100% of cognitive tasks”

Conservative 1e4 17

Best-guess 1e2 3

Aggressive 1e1 0.2

55 I list the results for other takeoff metrics here.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.yyref6x2mzxu
https://takeoffspeeds.com/megareport.html#timelines_analysis-metrics
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Interesting observations:
● In the best guess scenario we train AGI 0.8 years before we have enough runtime

compute to fully automate software and hardware R&D and 2 years before we have
enough effective compute to fully automate cognitive labour in general.

○ This is because the scenario combines a low training requirement (1e30
2020-FLOP) with an only-moderately low runtime requirement (1e15
2020-FLOP/s).

○ If I use a 1e14 2020-FLOP/s instead, then R&D is fully automated in the same
timestep that we get AGI, and we get full automation 1 year later.

○ This illustrates that in scenarios with low AGI training requirements you could be
“bottlenecked on runtime compute” such that the explosive improvement in AI
capabilities is significantly delayed by not being able to run more AIs.

■ Big caveat: the FTM doesn’t adequately capture the effects of AI
improvements after we have AGI, which will significantly speed up
software progress and reduce the gap between AGI and “AI that could
achieve full automation”.

■ Indeed, when I allow tradeoffs between training and runtime compute,
which implies benefits to training better AIs past full automation, the gap
between AGI and “AI that could achieve full automation” reduces to < 1
year.

● In the conservative scenario
○ We quickly max out the fraction of AI chips in a 1e26 training run. After this,

better AI must come from more $ spend, better hardware and better software.
○ But severe “parallelisation penalties” mean that it’s hard to speed up the slow

progress in software and hardware R&D even by raising spending after wake-up.
○ And people are slow to ramp up spending (perhaps because it’s hard to capture

the profits from AI applications).
○ AI automation gradually accelerates progress over a couple of decades to get us

to a 1e30 FLOP training run.
● In the aggressive scenario

○ "Wake up" is triggered in 2028:
■ Automating 6% of cognitive tasks requires 5e28 2020-FLOP, only 20X

less than AGI.
■ This is a ~4 OOM increase compared to 2022

● 2 OOMs from software, 0.5 OOMs from hardware, 1 OOMs from $
on FLOP
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○ By the time "wake up" occurs, the largest training run still only uses ~1/10,000 of
global FLOP.

○ We develop AGI later that same year by very rapidly  increasing the fraction of
FLOP in the largest training run and using AI to do software R&D.

1e42 2020-FLOP to train AGI
I looked at scenarios where AGI training requirements are 1e42 2020-FLOP, 1 OOM more than
median of Bio Anchors evolutionary anchor for TAI.

The key takeaways are:
● In the best-guess scenario AGI is trained in 2064 and takeoff takes 6 - 20 years

depending on the metric used.
● In the conservative scenario AGI is not trained before 2100.
● In the aggressive scenario AGI is trained in 2056 and takeoff takes 1 - 3 years

depending on the metric used.

1e42
2020-FLOP
to train AGI

effective FLOP
gap

Takeoff metric56

Years from “AI could readily automate 20% of cognitive tasks” to
“AI could readily automate 100% of cognitive tasks”

Conservative 1e10 50

Best-guess 1e6 16

Aggressive 1e3 0.9

56 I list the results for other takeoff metrics here.

https://takeoffspeeds.com/megareport.html#timelines_analysis-metrics
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Walk through of conservative 1e42 scenario
In this scenario:

● "Wake up" is triggered in 2050:
○ Hardware and software progress are about half as quick as in best-guess

scenarios due to poor R&D returns; the quality of hardware and software double
every 5 - 6 years.

○ Due to a huge effective FLOP gap, wake up is triggered by a training run of
~1e29 2020-FLOP. (This is 14 OOMs below the AGI training requirements.)

○ We achieve this training run mostly by spending more on training.
● Subsequent AI progress is pretty slow for a few reasons:

○ Hardware and software progress continues to be slow, for two reasons.
■ Poor R&D returns.
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■ The fraction of economy doing hardware and software R&D hit their caps
(1% GWP). Human R&D investments stop growing after this point, and
hardware and software progress become even slower.

○ We can no longer increase the fraction of compute on the largest training run.
○ Increasing global chip manufacturing capacity is slow.
○ Impact of AI automation on hardware R&D progress is bottlenecked by tasks that

require physical capital (e.g. experiments).
○ As a result we only automate 20% of (2020 value-weighted) cognitive tasks in

~2058 and still haven’t automated all of them by 2100. This doubles the rate of
GDP growth, but doesn’t speed up AI progress that much due to bottlenecks.

○ AI progress looks mostly like a continuation of standard economic growth trends
until a decade of so before AGI, when it starts to accelerate R&D progress.

● The scenario is unrealistic in how much the fraction of GWP spent on AI chips globally
grows - ~3 OOMs from its current ~$20b - before we get AGI. This is because the “cap”
on the fraction of spending was set exogenously for scenarios where AGI is at most a
couple of decades after “wake up”.

See the full list of assumptions (select “Very long timelines - Conservative” from the drop down).

Effect on timelines
The FTM contains a number of dynamics that shorten timelines compared to Bio Anchors.

First I explore how these dynamics play out if AGI training requirements are close to the median
implied by Bio Anchors. Then I consider the timelines effect in a wider variety of cases.

The FTM shortens timelines by ~six years for median training requirements
Let’s assume AGI requires 1e36 2020-FLOP to train. This anchors off the Bio Anchors’ medium
horizon NN which puts TAI at ~1e35 and is close to the Bio Anchors median. I increase this by 1
OOM because AGI is a higher bar than TAI.

How does the FTM’s best-guess takeoff scenario differ from the best-guess scenario in Bio
Anchors?

There are three major differences:
● Speed-up from AI automation.

○ Hardware and software. Initially the growth of FLOP/$ and 2020-FLOP per FLOP
are very similar between Bio Anchors and FTM. But in the FTM AI automation
significantly speeds progress.

■ How large is this effect? When I make the R&D runtime requirements
impossibly high in the playground, this delays AGI by ~5 years.

https://takeoffspeeds.com/megareport.html#timelines_analysis-assumptions
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.p5h1ayktsplg
https://docs.google.com/document/d/1IJ6Sr-gPeXdSJugFulwIpvavc0atjHGM82QjIfUSBGQ/edit#heading=h.p5h1ayktsplg
https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
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○ $ on FLOP. AI automation also increases the number of chips produced each
year, increasing the $ spent on the largest training run.57

○ How large is this effect?
■ How large is this effect? It increases the largest training run size by ~2X.58

This shortens timelines by ~0.5 year.59

● Faster ramp-up of % GWP spent on a training run.
○ FTM assumes that soon after "wake up" begins we’ll use 10% of global FLOP on

the largest training run and the real $ spending on global FLOP will double every
~3 years. This results in a more aggressive forecast than Bio Anchors, if "wake
up" begins early enough.

■ How large is this effect? Ignoring the effects of AI automation, this
increases the size of the largest training run by ~10X.60 This shortens
timelines by ~2 years.

There are a few other minor differences, which overall push towards the FTM having longer
timelines.61 The differences in hardware, software and $ on the largest training run are shown
below:

61 FLOP/$ starts slightly higher in FTM; though this is more than cancelled out by a lag before new chip
designs are deployed and slower pre-automation rate of hardware progress. The quantitative predictions
of Bio Anchors exclude software progress before 2025, whereas FTM excludes it only before 2022;
though this is roughly cancelled out by the slower pre-automation rate of software progress in FTM. Bio
Anchors caps software progress after ~3 OOMs (it varies for different anchors), which delays timelines
somewhat. Lastly, hardware and software progress slow over time in the FTM as we approach ultimate
limits to progress.

60 Comparing the “training compute investment ($)” between Bio Anchors and the FTM in the playground.

59 I halved the “max fraction of global FLOP on largest training run” in the playground; this delayed
timelines by 0.5 years.

58 Eye-balling the curve in the “money spent on training” graph in the playground, it looks like ~2X is spent
on training due to AI automation by the time we have AGI.

57 In the model this chain of causality is AI automation → more GWP → more $ investment in producing
AI chips.

https://takeoffspeeds.com/playground.html
https://takeoffspeeds.com/playground.html
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All together, the FTM shortens best-guess timelines by about ~six years from ~2050 to ~2044.62

Of course, the change would be smaller if we had a smaller effective FLOP gap. But in that case
takeoff would be even faster. Conversely, a larger effective FLOP gap would make takeoff
slower but shorten timelines by even more. It is possible to lengthen timelines and slow down
takeoff by changing parameters other than the effective FLOP gap.63

The FTM shortens timelines compared to Bio Anchors
What about if we don’t want to anchor off the median training requirements estimate from Bio
Anchors?

To more thoroughly investigate the shift in best-guess timelines, we did the following:
● Get Bio Anchors predictions for TAI timelines for a variety of different training

requirements:
○ Look at the median TAI training requirements for each ‘path’ in Bio Anchors. 64

○ Note down the median year when the TAI is affordable, according to each path.65

● Get FTM predictions for AGI timelines, anchoring off those same training requirements:
○ Assume AGI requires 1 OOM more training FLOP than TAI.

65 Top left graph here. More specifically, note down the first year when the probability of TAI being
affordable exceeds 50%, according to that path.

64 Bottom left graph here.

63 For example higher training requirements for AGI, worse returns to software and hardware, lower
estimates of the world’s ability to grow real inputs to AI.

62 Bio-anchors best-guess parameters put 50% on medium horizon being affordable by 2049; FTM
best-guess forecasts AGI will happen in 2041.

https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
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○ Make an assumption about the best-guess effective FLOP gap, given those
training requirements.

○ Run the FTM to see when AGI is trained.
● For each path, compare the Bio Anchors timelines prediction to the FTM timelines

prediction.
○ AGI being a higher bar also means the shift in timelines is slightly bigger than

what the table suggests.

Path FLOP to
train TAI
using 2020
algorithms

Bio-anchors
timelines
Year of TAI

Effective
FLOP
gap

FTM timelines
Year when AI
could fully
automate
cognitive labour

Timelines
shift

Lifetime
anchor

6e28 2032 1.5 2032 (2028)66 0 (5)

Short horizon
NN

2e32 2043 3 2037 6

Genome-like
model

6e33 2048 3.5 2041 7

Medium
horizon NN

8e34 2050 4 2044 6

Long horizon
NN

6e37 2062 6 2050 12

Evolution
anchor

2e41 2093 7 2069 24

These timelines shifts are significant: ~5 years for low training requirements and >10 years for
high training requirements. This is especially significant given that the forecasting target of the
FTM is a significantly higher level of AI: it requires we train AI that can readily perform 100% of
cognitive tasks, which is a higher bar than TAI, and that we have enough runtime compute to
actually replace all human cognitive labour.

Note that I assumed the effective FLOP gap was bigger in scenarios with higher training
requirements, matching my discussion above. This is one reason why the timelines shift is
bigger in those scenarios.

66 I’ve put the year of AGI in brackets, as this is more comparable with the year of TAI and happens many
years before full automation due to limited runtime compute. I think the 2033 is too late for full automation,
as we used the best-guess 2e16 2020-FLOP/s for AGI runtime requirements in 2020, and the correct
answer is probably lower if you can train AGI with 6e28 2020-FLOP.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28
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I believe the shift is especially large for the Evolution anchor because Bio Anchors best-guess
assumes that growth in $ on FLOP and software peters out by ~2060, and so the size of training
runs grows slowly from 2060-2090. We hit no analogous slowdown in the FTM.

These timelines shifts are very sensitive to the size of the effective FLOP gap and would
be very different for other reasonable choices.

● If you made the effective FLOP gap smaller you would get a smaller shift in timelines for
two reasons: i) “wake up” would happen later and so AI investments would grow less
quickly, ii) significant AI automation would happen later. Also, takeoff would be faster as
it would take less time to cross the effective FLOP gap.

● If you made all the effective FLOP gaps bigger you’d get a bigger shift in timelines and
takeoff would be slower.

The next section discusses a consideration that shortens timelines even more.

Trading off runtime compute and training compute
Many thanks to Paul Christiano for prompting me to consider this.

What does it mean to trade-off runtime and training compute?
Let’s suppose that training AGI requires 1e36 FLOP and you can then run AGI on 1e16 FLOP/s.
If you could only muster a training run of 1e35 FLOP, could you still get an AGI’ output from the
resultant system if you used 1e17 FLOP/s at runtime? Perhaps you can make up for the 10X
smaller training run by using 10X more runtime compute.

You could have the AI think for longer, or you could run multiple copies. This would allow
techniques like “generate multiple solutions to a problem and then pick the best”, or “break the
problem into sub-parts and solve each sub-part separately”. Perhaps performance would be the
same or better using 1e35 FLOP for training and 1e17 FLOP/s at runtime, compared to using
1e36 FLOP for training and 1e16 FLOP/s at runtime.

Thus far, the FTM has ignored this possibility. If automating the final cognitive task requires
1e36 2020-FLOP but your biggest training run to date is 1e35 2020-FLOP then AI cannot
produce any output at that task, no matter how much runtime compute you have to hand. (So
says the FTM.) Even if you have huge amounts of runtime compute lying around, you cannot
leverage it to reduce your training requirements.

Here’s another way to think about the tradeoff: Before we can cheaply run an AI to perform a
given task, we’ll be able to very expensively run an AI to perform the task. At first, the AI will
require loads of runtime compute to do the task so it’s expensive; then as AIs improve (which
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translates to “training runs get bigger” in this framework’s ontology) we need less runtime
compute and it becomes cheaper.

We can trade-off runtime and training compute
There are a few reasons to think that these implications of the FTM thus far are unrealistic.

● Empirical evidence. It’s often possible in practice to use additional runtime compute to
improve performance, reducing the training FLOP needed to achieve any given level of
performance. Some examples:

○ Monte Carlo Tree Search. If you search through a deeper tree, that uses more
runtime compute and improves performance.

■ Jones (2021) varies the depth of tree search of AlphaZero to study its
performance at various combinations of runtime and training compute. He
finds that using 10X more training compute reduces the runtime compute
needed to achieve a level of performance by 15X.

■ This was possible for ~2 OOMs of trade-off before additional runtime hit
diminishing returns.

○ Have multiple attempts at the problem. If you generate multiple solutions and
then submit the best ones, this uses more runtime compute and improves
performance.

■ AlphaCode sees very significant improvements through this avenue.
● It generates multiple possible solutions, some are ruled out via

unit tests, and then ten solutions are submitted.
● In figure 6, generating one million samples rather than one

thousand has a similar effect on performance to increasing the
parameter count by 1000X. This means that keeping runtime
compute constant, increasing model size didn’t improve
performance (in this range)!

● A similar quantitative result is obtained in OpenAI’s codex paper.67

● These large benefits of additional runtime compute probably stem
from the ability to test generated solutions on unit tests before
submission.

■ WebGPT found that best-of-n sampling improves results at runtime.68

■ OpenAI found that training a verifier to rank 100 solutions to math
problems improved performance as much as increasing model size 30X.

● That’s 3X more runtime compute making up for ~100X more
training FLOP.69

● But generating more than 400 solutions at test time actually
reduced performance.

69 I’m assuming here that for GPT scaling a 30X model size increase translates to 100X more training
FLOP.

68 See section 5.2.
67 See figure 6.

https://arxiv.org/pdf/2104.03113.pdf#page=5
https://arxiv.org/pdf/2203.07814.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://cdn.openai.com/WebGPT.pdf
https://arxiv.org/pdf/2110.14168.pdf
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○ Chain of thought prompting. If language models are encouraged to reason
through a problem step by step, this significantly improves performance across a
wide range of tasks but also requires more runtime compute.

● A theoretical argument: No sudden jumps in useful output.
○ Imagine running the following experiment. First, you do a 1e30 FLOP training

run, then try to get as much useful output at some task as possible from your
system using (e.g.) 1e31 runtime FLOP. Then you do a slightly bigger training
run, say 3e30 FLOP, and again get as much useful output as you can by running
it using 1e31 FLOP. You continue to slowly increase your training FLOP, leaving
your training FLOP constant.

○ How will the AI’s output at the task change over time? I expect it to improve
smoothly. Performance on most benchmarks does this, especially when you’re
explicitly optimising for the benchmark during training (e.g. fine-tuning on that
specific task).

○ The FTM currently has a contrary implication. It implies that, when the training
run is below the threshold for performing the task, you will produce 0 output.
When it rises above that threshold, you will suddenly produce a task output that
is proportional to your runtime FLOP (and so potentially extremely large).

○ This implication can be removed from the FTM by allowing it to trade-off runtime
and training FLOP. Then if the training run is 10X smaller than the threshold, AI
can still perform the task but it uses runtime compute (e.g.) 10X less efficiently.
That way you’ll initially have small output at the task, via having a small training
run that forces you to use your runtime compute very inefficiently.

● A theoretical model.
○ David Schneider-Joseph has made a model of this tradeoff in a setting where the

task is to correctly predict the next 5000 tokens.
○ In the model, the trade-off can reduce training compute by up to ~3 OOMs, at the

cost of using 8 OOMs additional runtime compute.

The empirical evidence typically suggests you should be able to do the tradeoff for at least a few
OOMs, but no more without additional tricks; the theoretical model backs this up. The theoretical
argument seemingly supports being able to do the tradeoff ~indefinitely.

We can model this trade-off in the FTM
Currently here’s how the FTM works:

● Each task t has a training requirement T and a runtime requirement R.
● If the largest training run exceeds T FLOP, you can use R FLOP/s to run one

human-equivalent worker doing t. If the largest training run is below T, AI can’t perform t.

Here’s how we can adjust the FTM to incorporate a trade-off between training and runtime
compute:

● [Unchanged] Each task t has a training requirement T and a runtime requirement R.

https://arxiv.org/pdf/2201.11903.pdf
https://colab.research.google.com/drive/1Z12zJtc_Rb-U_eHrEO2lTeNcO0JhYPb9?usp=sharing#scrollTo=tGBsMneSl9on
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● If the largest training run equals T’ FLOP, you can use R’ FLOP/s to run one
human-equivalent worker doing t. R’ = R * (T / T’)^N.

○ If T’ = T, it takes R FLOP/s to run a human equivalent, as before.
○ If T’ < T, it takes more than R FLOP/s to run a human equivalent.
○ If T’ > T, it takes less than R FLOP/s to run a human equivalent.
○ The bigger your training run, the more efficiently you can perform the task.
○ n controls the quantitative tradeoff between runtime and training FLOP.

■ If N = 1, a 10X smaller training run increases runtime compute by 10X.
■ If N = 2, a 10X smaller training run increases runtime compute by 100X.
■ If N = 3, a 10X smaller training run increases runtime compute by 1000X.
■ What is N?

● The above empirical ML evidence can be interpreted to give
estimates of N.

● I estimate N using some of this ML evidence, and some other
types of evidence, here.

Trading-off training and runtime compute generically shortens timelines
Without this trade-off, fully automating (e.g.) software R&D requires two conditions:

● Enough training FLOP for AI to perform all tasks.
● Enough runtime FLOP to run more AIs than humans at each task.

If you fail either condition, you can’t fully automate software R&D. See diagram.

https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#bookmark=id.eqgufka8idwl
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With the trade-off, you can fall short of one condition (e.g. not enough training FLOP) but make
up for it with the other (e.g. more than enough runtime FLOP). See diagram.

It is strictly easier to fully automate software R&D with the tradeoff. The shaded region with
tradeoffs is a superset of the shaded region without tradeoffs.

In a similar way, if it’s possible to tradeoff training and runtime compute then lower levels of
automation will be strictly easier to achieve and they will occur earlier in time. So, quite
generically, having a tradeoff shortens timelines.

Trading-off training and runtime compute can significantly shorten timelines
if you have ~large training requirements
Let’s say AGI requires 1e36 FLOP, one OOM more than the Bio Anchors median for TAI. And
let’s say it runs in 1e16 FLOP/s. In this case, I think the possibility of trading-off runtime and
training compute would significantly shorten timelines.

Let’s assume that 10% of a year’s FLOP are ultimately used to train AGI. In that year, 1e37
FLOP were available in total. Let’s also assume that 10% of those FLOP are used to run AGIs
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doing AI software R&D: 1e36 FLOP.70 You could run ~3e12 AGIs doing software R&D (and more
in total).71

3 trillion human-equivalents would be much more than sufficient to fully automate software R&D.
I would guess there are 10,000 people pushing forward SOTA AI (10X DeepMind’s team).
That’s 300 million times as many AGIs as the current workforce!72 Let’s assume a 100X
expansion in the software R&D workforce by the time of AGI, reducing the discrepancy to three
million.

But this underestimates the discrepancy. AGIs will have several significant productivity
advantages over humans: thinking faster, better motivations, less leisure and sleep, you can
copy the most productive workers. Let’s say this all boosts their productivity by 30X, taking the
discrepancy to 100 million. AGIs would be 100 million times as productive at software R&D as
the human workforce.

So by the time we train AGI, we’ll have much more runtime compute than we need to fully
automate software R&D. If tradeoffs are allowed, we could leverage that to fully automate
software R&D with a smaller training run. How much smaller?

Let’s suppose that at some earlier time we had 1000X less compute. So our biggest training run
is 1000X smaller at 1e33 FLOP, 1000X below the AGI training requirement. We also have
1000X less runtime compute: we used to have 100 million times more runtime compute than we
needed, now we have 100,000X as much. So our training compute is 1000X below the
requirement, but our runtime compute is still 100,000X above the requirement of matching
human output.

If we can trade-off 1 OOM of training for 1 OOM of runtime, we’ll be able to run AIs whose
software R&D output is 100X that of humans. This means we could fully automate software
R&D with a training run 3 OOMs smaller than without tradeoffs (1e33 rather than 1e36).

This is just an example, you can play around with different numbers in this sheet. It suggests
though that if AGI has large training requirements, we will be ~swimming in runtime FLOP
for software R&D long before we’re able to train AGI. If in addition we can trade-off
runtime and training FLOP, we’ll be able to ~fully automate AI software R&D by running
loads and loads of pre-AGI systems. This would significantly shorten timelines by reducing
the largest training run we have to run by several OOMs.

72 3e12/1e4 = 3e8

71 FLOP available in a year  / AGI FLOP per year = FLOP available in a year  / (AGI FLOP/s * seconds in
a year) = 1e36 / (1e16 * ~3e7) = ~3e12.

70 Why 10%? After “wake up”, I expect people to be keen to increase software R&D investment, and AIs
are much easier to ‘redirect’ towards this purpose than humans.

https://docs.google.com/spreadsheets/d/1LHIvJOJFS0kwN38pKjLvp_xCEWETbPmfv0U4q4-htVk/edit#gid=0
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The FTM implies that trading-off training and runtime compute significantly
shortens timelines
The above dynamic plays out in the FTM. For each task, rather than needing to exceed a
certain training requirement, you can instead automate it with a smaller training run by using
more runtime FLOP. The logic of the above section is replicated for each task.73 Allowing
trade-offs brings forward in time the whole pattern of automation.

Without tradeoffs, AGI is first trained in ~2040 with my best guess parameters. With tradeoffs,
it’s trained much sooner. The shift depends on N, how many extra OOMs of runtime compute
you need to make up for having 1 OOM less training compute.

N Year when AI could readily automate 100%
of cognitive tasks

0.5 2038

2 2040

6 2042

No tradeoff 2044

The swing here is significant and this merits further investigation. The basic story, taking the
N=0.5 case as an example, is that there aren’t that many AI software R&D workers and so we’re
able to achieve full R&D automation in 2037 – seven years earlier than with no tradeoff! – by
doing a 3e33 training run (2.5 OOMs less 2020-FLOP than the AGI training requirements) and
using 2.5*0.5=1.25 OOMs more runtime compute than would be needed to fully automate R&D
after a 1e36 training run. Then fast software progress means that AI could readily automate
100% of cognitive tasks 1 year later.

Another effect of this is to smooth software progress as we approach full automation. Without a
tradeoff, output on the final cognitive task can discontinuously increase by multiple OOMs when
it is first automated; the tradeoff smooths this transition as when a task is first automated it is
normally via a tradeoff and so there is limited runtime compute for the task. Compare the N=0.5
scenario with the “no tradeoff” scenario:

73 I’ve been referring to the training and runtime requirements of the final task as the AGI requirements.
Other tasks have lower training and runtime requirements than this.
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Top: tradeoff with N=0.5. Bottom: no tradeoff. (All other parameters take best-guess values.) Notice the
sudden increase in the level of software (green line) when software R&D is fully automated in the bottom

scenario. This sudden jump is smoothed out in the top scenario by the tradeoff.
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Capping the extent to the tradeoff reduces its effect
There are some potential reasons to doubt the above results:

1. Software progress counts for ‘double’ when you have a trade-off.
a. If you improve software by 10X in the FTM, that increases both training and

runtime efficiency by 10X.
b. My starting value for AGI runtime requirements is 1e17 FLOP/s. Based on

one-time gains, I reduce this to ~1e16 FLOP/s for goods and services and ~5e15
FLOP/s for R&D. With ~3 OOMs of software progress before AGI, these reduce
to ~1e13 FLOP/s. So the FTM is expecting AGI runtime requirements to be fairly
low by the time AGI is near. The plentiful runtime compute is then traded-off to
reduce training requirements.

c. If you don’t think AGI runtime requirements will become this low, or you think
there’s something suspicious about trading-off runtime efficiency improvements
to reduce your training requirements, you should be sceptical of the above.

2. Trading off between training and runtime might only be possible for a few OOMs.
a. If you’re 2 OOMs short of the training requirement, you can make up for it with

more runtime compute, but if you’re 6 OOMs short there’s nothing you can do.
b. Indeed, in all the empirical examples above, and in the theoretical model, the

ability to improve performance using more runtime FLOP peters out after a few
OOMs.

i. AlphaCode is a possible exception: the benefits increase over at least 6
OOMs. This is probably because tested generated solutions to see if
they’re good before submitting. The lesson might be: you can tradeoff for
more OOMs when you can easily evaluate output.

ii. This isn’t conclusive: perhaps if we try we’ll find new techniques that allow
the trade-off to continue for longer.

c. In these simulations, the trade-off operates over many OOMs. In the top N=0.5
scenario full automation is achieved with 7 OOMs fewer training 2020-FLOP than
the training requirement; in the middle scenario it’s 3 OOMs fewer.

d. How far should the trade-off continue for before it’s capped?
i. The above examples suggest 2-3 OOMs is pretty common.
ii. But some of the techniques used are things humans already do to

enhance their output. E.g. “chain of thought” and “evaluate and revise
their own work”.  We should only include a trade-off if it will allow AIs to
substitute “more thinking time” for “being smarter” beyond what humans
already do.

iii. Some existing techniques do go beyond what humans typically do, e.g.
best-of-N is normally too expensive to be practical for humans; but might
well be so for AIs. In addition, I expect researchers to develop novel
techniques for leveraging cheap runtime compute to improve
performance. We should include these techniques in the trade-off.

iv. Overall, I’m currently inclined to see a cap after ~1-2 OOMs as a
best-guess, with 3 OOMs as aggressive and 0 OOMs as conservative.

e. This is the reason I find the most convincing for distrusting these results.
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3. The FTM simulation overestimates the runtime FLOP available for AI early on.
a. The simulation assumes all FLOP in the world is initially used for running AIs.
b. This isn’t true, I believe the true number is closer to 1-10%.
c. In addition, the FTM best-guess assumptions are that after “wake up” the fraction

of global FLOP used to run AIs doing software R&D rises quickly to a cap of
20%, which is a lot.

d. However I don’t think this factor is significant.
i. We reran the three simulations with 100X less runtime FLOP and

timelines were delayed by 1-2 years in each case. So there was still a
large shortening in timelines from the tradeoff, even using conservative
amounts of runtime FLOP.

ii. The FTM significantly overestimates the number of human workers in
software and hardware R&D in 2022 (1.6 million and 160 million), which
pushes in the opposite direction.

To account for these worries, especially number 2,  we also ran simulations where the trade-off
could only happen for 1.5 OOMs in either direction.

AGI takes 1e36 FLOP to train
with 2020 algorithms

Year when AI could readily automate 100% of cognitive
tasks

N No cap on tradeoff Tradeoff capped after 1.5 OOMs

0.5 2038 2039

2 2040 2040

6 2042 2044

No tradeoff 2044 2044

Repeating the above analysis for a short timelines scenario
The above numbers all assumed AGI training requirements = 1e36 2020-FLOP, runtime
requirements = 2e16 2020-FLOP/s.

Let’s redo the analysis for training requirements = 1e30 2020-FLOP, runtime requirements =
1e15 2020-FLOP/s.
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AGI takes 1e30 FLOP to train
with 2020 algorithms

Year when AI could readily automate 100% of cognitive
tasks

N No cap on tradeoff Tradeoff capped after 1.5 OOMs

0.5 2030 2030

2 2030 2030

6 2030 2030

No tradeoff 2032 2032

There’s a smaller effect, because runtime compute is more of a bottleneck when training
requirements are low. So we can’t trade off as much runtime compute to get full automation
sooner.

Am I including the tradeoff in the results?
There’s no tradeoff in the scenario analysis above, but it is included below in the Monte Carlo
and the parameter importance analysis.

Monte Carlo analysis
We ran 1000 simulations, each time randomly sampling each parameter between its
“conservative” and “aggressive” values (listed here).74 The only exception is AGI training
requirements, which are sampled from the Bio Anchors distribution.

We encoded correlations between the sampled values of each parameter. The main correlations
are:75

75 These high-level correlations, and others, are recorded here; the full matrix of correlation is here (see
“Rank correlations: click here to view”). I think I’ve overestimated the correlations between these inputs,
extremizing the tail outcomes. On the other hand, my sampling procedure means the parameter values
never fall outside the “conservative” to “aggressive” range, which pushes in the opposite direction.

74 The sampling distribution is a mixture of two distributions. It places 50% weight on a log-uniform
distribution between the parameter’s “conservative” and “best-guess” value, and 50% weight on a
log-uniform distribution between its “best-guess” and “aggressive” values.

https://takeoffspeeds.com/megareport.html#mc_analysis-inputs
https://docs.google.com/spreadsheets/d/1Cn6GTfVfC2VrO1ayeqDHyBy5vr5Ef-OuEtT9wrlO5Qs/edit#gid=684255754
https://takeoffspeeds.com/megareport.html#mc_analysis-inputs
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● Strong correlation between growth of AI investments. If spending in AI software
R&D grows quickly, I also expect spending on hardware R&D and AI chips to grow more
quickly.

● Strong correlation between AGI training requirements with 2020 algorithms and
total possible software progress before hitting physical limits. Human lifetime
learning gives a theoretical limit on how efficient learning can be; ~1e24 FLOP. If AGI
would currently take 1e30 FLOP to train, that suggests 6 OOMs of improvement left; if it
would take 1e40, that suggests 16 OOMs left.

● Strong correlation between the AGI training requirements and the cap on trading
of training and runtime compute. I expect the ability to do these tradeoffs to increase
significantly over time as we develop new techniques for it, and this correlation is a
hacky way to incorporate that.

● Medium correlation between AGI training requirements and the effective FLOP
gap. If AGI requires “long horizon” training, or some other high-cost approach to training,
that increases my probability that 20% of tasks will be automated with much less
effective training compute than AGI.

● Medium correlation between AGI training requirements and how much easier it is
to train AI that can perform all R&D tasks than to train AGI. If AGI requires “long
horizon” training, or some other high-cost approach to training, that increases my
probability that you can perform all hardware and software R&D tasks with less training
FLOP.

● Medium correlation between AGI training requirements and growth of AI
investments. If AGI training requirements are lower, it should be easier to grow AI
investments quickly as they’re starting from a lower base.

○ This also captures that fact that lower training requirements → smaller effective
FLOP gap → AI capabilities increase more with each increment of investment →
more incentive to quickly grow AI investments.76

● Medium correlation between different ‘bottlenecking’ parameters. If non-automated
human tasks or physical capital are a significant bottleneck in GDP they’re more likely to
be so in R&D as well.

● Weak correlation between different R&D returns.
○ Good returns to hardware R&D → cheaper to run big ML experiments which are

useful for software R&D → better returns to software R&D.
○ Good returns to hardware R&D → techno optimists were right about hardware

progress → they’re relatively more likely to be right about software progress. (I’m
assuming here that people’s views on the likely returns from different areas of AI
R&D are correlated.)

● Weak correlation between growth of AI investments and R&D returns. If R&D
returns are higher, the per-$ payoff from AI investments is higher.

● Weak correlation between growth of AI investments and the absence of
bottlenecks. If there aren’t significant bottlenecks, the per-$ payoff from AI investments
is higher.

76 We could have represented this via correlation between the effective FLOP gap and AI investments, but
didn’t for a complicated technical reason.
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We resample the parameters until we avoid the implication that AI can already readily automate
>1% of the economy or >5% of R&D. This raises the training requirements, while lowering the
FLOP gap and cap on the tradeoff between training and runtime compute.

Here are the results, sampling AGI training requirements from the Bio Anchors best-guess
distribution (median ~1e36 FLOP to train AGI with 2020 algorithms).77

Percentile

AI timelines
First year when AI can readily automate 100% of

cognitive tasks in the general economy.

1% 2025.7

10% 2029.6

20% 2032.7

50% 2043.3

80% 2070.3

90% ≥ 2100

99% ≥ 2100

Percentile78

Takeoff speed
Years from “AI can readily automate 20% of cognitive tasks” to “AI can readily
automate 100% of cognitive tasks”.

Tasks in the general economy. Tasks in software and hardware R&D.

1% 0.3 0.9

10% 0.8 1.6

20% 1.2 2.2

50% 2.9 4.3

80% 7.6 9.6

90% 12.5 14.6

78 This is all conditional on AGI before 2100.

77 We assume AGI training requirements are 1 OOM higher than TAI training requirements, and reduce
the probability of “you need more compute than evolution” from 10% to 4%.

https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495
https://docs.google.com/spreadsheets/d/1TjNQyVHvHlC-sZbcA7CRKcCp0NxV6MkkqBvL408xrJw/edit#gid=505210495


53

99% 28 30.7

The median AGI year is later than in the best-guess scenario (2043 vs 2040), and the takeoff is
faster than in the best-guess scenario. I believe the key reason is that the median effective
FLOP gap in the Monte Carlo is smaller than my best-guess effective FLOP gap (~3.5
OOMs vs 4 OOMs). This makes takeoff faster and lengthens AI timelines.

Why is the median effective FLOP gap smaller than the best-guess effective FLOP gap?79 We
sampled the gap from a distribution in which the median was 4 OOMs, but we resampled when
the effective FLOP gap was so large that it implied that AI can already readily automate either
>1% of the economy or >5% of R&D. This meant we resampled large effective FLOP gaps more
commonly than small effective FLOP gaps, skewing the median of the resultant distribution
down.

Why think that it is this smaller median effective FLOP gap that explains the difference between
the median results of the Monte Carlo and the best guess? Because when we change the
effective FLOP gap in the best guess scenario to match the Monte Carlo median, the
discrepancy disappears. In other words, when you run one deterministic simulation where each
parameter takes its median value from the Monte Carlo, the results are similar to the median
results from the entire Monte Carlo.

AGI year Takeoff
speed80

Deterministic sim: all params
take median values from
Monte Carlo

2043.6 7.8

Monte Carlo median 2042.8 7.5

Those with shorter timelines may be more interested in the Monte Carlo results when sampling
AGI training requirements from an alternative distribution with a more aggressive distribution
that has a median of ~1e31.

Percentile

AI timelines
First year when AI can readily automate 100% of

cognitive tasks in the general economy.

1% 2024.8

10% 2027

80 Years from “AI can readily perform 10% of cognitive tasks” to “you can run 10 billion AGIs”
79 For all other parameters, the median Monte Carlo value is very similar to the best-guess value.

https://docs.google.com/spreadsheets/d/15o3oOFLqjenZdFGfmx7jOHgBjOWv01minIx6BM0WpOU/edit#gid=383813695
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20% 2028.6

50% 2033.7

80% 2044.1

90% 2054.9

99% ≥ 2100

Percentile81

Takeoff speed
Years from “AI can readily automate 20% of cognitive tasks” to “AI can readily
automate 100% of cognitive tasks”.

Tasks in the general economy. Tasks in software and hardware R&D.

1% 0.2 1.1

10% 0.5 1.7

20% 0.7 2.2

50% 1.7 3.7

80% 3.9 6.4

90% 6.1 9.1

99% 20 24.2

Will there be a 4-year GWP doubling before the first 1-year GWP doubling?
Each simulation run calculates the Gross World Product (GWP) in each timestep, which means
we can calculate the fraction of runs in which a 4-year GWP doubling finishes before the start of
the first 1-year GWP doubling. This happens in 77% of runs with the Bio Anchors best-guess
distribution and 68% of runs with the Bio Anchors aggressive distribution.

My personally probability for this is somewhat lower than these numbers because I expect
deployment delays to be longer for pre-AGI systems than for superintelligent AGIs.

81 This is all conditional on AGI before 2100.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.2j49ivj8j5lr
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.2j49ivj8j5lr
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Parameter importance analysis
This framework is complicated. There are many parameters. To test their importance, we varied
each from a conservative to an aggressive value and looked at the resultant change in various
takeoff speed metrics. All other parameters were held fixed at their best-guess values.

Important parameters tend to affect either i) the ability to cross the effective FLOP gap via
increasing the fraction of global FLOP on the largest training run or ii) the returns to software
and hardware R&D as AI automation increases R&D inputs.

The following table lists parameters from most to least important for takeoff speed. “years
from AI .82

Parameter When I vary the
parameter, how
much does
takeoff speed
change?
Takeoff speed =
Years from “AI can
readily automate
20% of cognitive
tasks” to “AI can
readily automate
100% of cognitive
tasks”.

Explanation for parameter importance

AGI training
requirements
(2020-FLOP)

- When AGI training FLOP is high, we reach the maximum
fraction of global FLOP on a training run before the takeoff
startpoint. So increasing the fraction doesn’t contribute to
crossing the effective FLOP gap.
- FTM assumes that hardware and software returns
become worse over time. More.
- Human inputs to software R&D reach their maximum (1%
GWP) before AGI, slowing software progress.
- The quantitative analysis actually ranked this a second
most important, but I think that’s a mistake.
i) It ignored the fact that small AGI training requirements
imply a narrow effective FLOP gap.
ii)  It varied training requirements within a narrow range83,
underestimating its importance.

effective FLOP - This is the ‘distance we need to cover’ during takeoff. If

83 1e33 to 1e40. Why not use a wider range? The analysis uses an effective FLOP gap for 5 OOMs, and
this combined with 1e30 AGI training requirements implied that >1% of goods tasks were already
automated in 2022.

82 The ordering depends on the average difference the parameter makes to several different takeoff speed
metrics. These are all AI capability metrics, rather than impact metrics (e.g. GWP impacts). They are the
ones listed here before the ‘combined’ column which gives their average.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.eukd07i8xc38
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.1iaqabd1f9bx
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.2j49ivj8j5lr
https://docs.google.com/spreadsheets/d/1RGAUbO2LiLtB-IFlArtjs-IMxZvwbJHXEvORBWgQNDE/edit#gid=101445994
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gap it’s twice as far, takeoff takes ~twice as long.84

- It’s highly uncertain.

R&D
parallelisation
penalty

I.e. If I double research effort, how much faster does R&D
progress?

- I think this could range from 1.2X to 2X; I’m not aware of
good data pinning it down.
- This affects how much software and hardware progress
accelerates when research efforts rise due to higher
human investment and AI automation.

Software returns - Highly uncertain
- Software updates can be immediately applied to all
hardware without delay, making this especially important
as progress accelerates

R&D vs general
economy,
automation
training
requirements

I.e. How much less effective training compute is needed to
fully automate the cognitive tasks in AI R&D compared to
the general economy?

If the difference is significant, AI may be dramatically
accelerating AI progress by the time AI can readily
automate 20% of cognitive tasks in the general economy.

Substitutability
between different
cognitive R&D
tasks

- Conservative value means that human bottlenecks
significantly limit the impact of partial AI automation
- Affects both hardware and software R&D

Maximum
tradeoff between
training and
runtime compute

A bigger tradeoff the training requirements for AI to fully
automate AI R&D, reducing AI timelines and thereby
accelerating up takeoff.

Effective FLOP
gap in runtime
requirements

I.e. how much more compute do you need to run AI that
can perform 100% of cognitive tasks, compared to AI that
can perform 20%.

This matters in worlds where automation is bottlenecked
by a lack of runtime compute; i.e. worlds where AGI
training requirements are low.

g(fraction of
GWP spent on
compute)

I.e. how quickly can we scale up production of AI chips?

This translates ~directly into more FLOP for training AI.

84 This is a rough rule of thumb, but could be false. Increasing the fraction of global FLOP on a training
run might allow us to cross a small effective FLOP gap very quickly; but then if the effective FLOP gap
were twice as big we’d max out that fraction and take more than twice as long to cross.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28
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Hardware returns - Current input growth is only ~5%, so AI automation can
significantly increase this growth and accelerate progress.

Hardware
adoption delay

I.e., how long after inventing a new hardware design can
we start printing it?

This delays the feedback loop: better AI → more hardware
R&D → better AI chips → better AI.

The analysis underestimates the importance of AGI training requirements for the reasons stated
in the table. So overall I believe that AGI training requirements is the most important parameter
for takeoff speed.

See full results.

8. Limitations of the Full Takeoff Model, and how
they affect takeoff speed
This gives more detail on many of the FTM’s limitations and could be worth reading if
you want to understand them better.

The Full Takeoff Model (FTM) is limited in many ways. This section looks at its various
limitations and asks “does this limitation bias the model towards thinking takeoff is too fast or too
slow?”

The following table summarises the limitations and their implications for takeoff speed.

Limitation Implications for takeoff speed

Deployment delays (that don’t delay
future AI capabilities progress)

Makes impact takeoff slower in general; but could
make it faster if superhuman AI quickly removes
barriers to deployment; creates a scary capability
imbalance between “SOTA AI” and “AI that’s integrated
in the economy”.

Deployment delays (that do delay
future AI capabilities progress)

Takeoff will be somewhat slower than the predictions of
the FTM (months, maybe years)

Additional bottlenecks to developing
AI systems

Could make takeoff faster or slower; overall I think this
makes very fast takeoff scenarios less likely.

There might be a discontinuous jump
in AI capabilities

Raises the probability of extremely fast takeoff (e.g. in
days, weeks or months).

https://takeoffspeeds.com/megareport.html#parameter_importance_analysis
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Focuses on the transition to AGI
rather than the aftermath of AGI

Unclear.

The FTM implies GWP growth is
certain to accelerate with AGI, which
many economists disagree with.

Makes fast takeoff less likely.

The FTM assumes that investment in
AI R&D vs other areas grows
exogenously, rather than modelling
actors’ incentives.

Adds uncertainty

Elides the distinction between
capabilities takeoff and impact takeoff

Overall, considering these factors:
● Increases my credence in very fast takeoff and very slow takeoff.
● Updates me towards slower capability takeoff overall.
● Updates me towards much less time from “AI has a major economic impact” to “AI poses

x-risk”. (This metric has an impact-based startpoint and a capability-based endpoint.)
● Updates me towards longer AI timelines.

There might be delays between developing advanced AI and
deploying it
This limitation concerns AI automation. The FTM assumes that, for any trained AI, we deploy it
in the economy (/ hardware R&D / software R&D) as soon as we have enough runtime compute
to do so.85

But in fact there might be delays to deploying AI systems. Example delays include regulations,
concerns about the safety of AI systems, political resistance from workers who would lose their
jobs86, people distrusting AI, time needed to integrate AI into work flows87, and other delays from
domestic or international politics.

Some deployment delays will delay future AI progress very directly. For example, delays to
deploying AIs that do software R&D will delay future algorithmic progress. And similarly for AIs
that would increase FLOP/$ or increase fab throughput (expanding the output of the fab industry
and so growing $ on FLOP globally). Other deployment delays won’t cause future AI progress to

87 This last delay I’ve tried to sidestep by stipulating that when I say “AI can perform” a task I mean that AI
can readily perform that task. If it would take a lot of time to integrate AI into work flows so it can perform
a task, then AI can’t readily perform the task. This raises the bar for training “AI that can perform x% of
tasks”.

86 Though this will be less of a problem to the extent that AI automates parts of existing jobs, allowing
practitioners to spend more time on other aspects of the job.

85 I explained this assumption in more detail in section 5.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.9ii5ypbwnkp0
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.8h6dw9elu93o
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.sj3jp6qb493e
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be delayed. For example, delays in deploying AI to improve healthcare need not slow down
subsequent AI progress (though it may if it reduces future AI investments).

To simplify the analysis, let’s first consider deployment delays that don’t cause future AI
progress to be delayed. Then we’ll consider deployment delays that do delay future AI progress.

Deployment delays that don’t delay future AI progress
Delays like these don’t affect capability takeoff speed but may affect impact takeoff speed.88

There are a few different forms these delays could take, which affect impact takeoff speed in
different ways. I’ll briefly mention four possibilities.

Constant Delays. If there’s a constant time delay to deploying systems (relative to the
predictions of FTM), then impact takeoff speed doesn’t change. All impacts are moved back in
time by the same amount.89 A concrete example would be “it takes the government 6 months to
approve each new AI for deployment”.

Diminishing Delays. If there are shorter delays to deploying more capable AIs (e.g. because
they can increasingly manage their own rollout), then impact takeoff is faster. The impacts of
earlier AIs are delayed by more than the impacts of later AIs, so there’s less calendar time from
“small impact” to “large impact”. An extreme example of this is “pre-AGI systems aren't deployed
anywhere in the economy due to regulations; then one year superintelligent AGI takes over and
starts colonizing the stars”.90

This fits with the long-run trend of deployment delays shortening over time:

90 Another extreme example is the “sonic boom” argument, that falling deployment delays will cause a
discontinuous jump in the capability of deployed AIs. Search “sonic boom”.

89 If your preferred takeoff speeds metric was a mixture of capabilities and impact metrics, then Constant
Delays could affect takeoff speed. For example, the “time from a crazy impressive demo to 20% GWP
growth” would increase with Constant Delays (the growth but not the demo would be delayed). But the
“time from 5% GWP growth to first training AGI” would decrease with Constant Delays.

88 I explain the distinction between these notions of takeoff speed here; I think hard takeoff in either sense
would be strategically important.

https://sideways-view.com/2018/02/24/takeoff-speeds/
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.9ii5ypbwnkp0
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91

92

92 Source.
91 Source.

https://www.visualcapitalist.com/rising-speed-technological-adoption/
https://www.brookings.edu/blog/future-development/2020/01/17/whoever-leads-in-artificial-intelligence-in-2030-will-rule-the-world-until-2100/
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93

This provides evidence for Diminishing Delays and suggests delays for advanced AI could be
anywhere from a few months (for some software), to ~10 years (like the internet).

Growing Delays. If there are longer delays to deploying more capable AIs (e.g. because it’s
harder to check that we trust more capable AIs) then impact takeoff is slower.

Impact Distributing Delays. In the previous two possibilities, each AI has the same impact as
the FTM predicts but only after some time delay. A third possibility is that each AI’s impact is
spread out over many years or decades. A concrete example would be “regulations always
mean that each new AI can initially only operate in 10% of industries and it takes 20 years
before it can operate in >90%”. This would prevent a fast impact takeoff, no matter how fast
capabilities takeoff is.

Notice that if Impact Distributing Delays applied to pre-AGI systems, but stopped applying after
AI exceeds a certain capability threshold, then this would again make impact takeoff faster (it’s
just like Diminishing Delays). To guarantee slow takeoff, Impact Distributing Delays must apply
for AI of any capability level.

Which of these is most plausible?
● Impact Distributing Delays seem plausible, at least when AI intelligence is below

human-level.
○ This is closest to what has occurred historically for most tech. Even if the tech is

developed very quickly, adoption takes decades.
○ Humans will be (rightly!) cautious to deploy advanced AI in important and

power-granting roles in the economy. This could cause many years of delay to
rolling out even very capable AI.

● Competition could prevent Impact Distributing Delays from occuring, especially in
strategically important areas.

93 Source.

https://steveanderson.com/2017/04/03/technology-timeline-time-to-reach-mass-adoption/
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○ If two countries are a few months or years apart in AI capabilities, and
superhuman AI grants large amounts of power, then delaying deployment by
months or years would risk falling significantly behind.

○ So people may think that they should quickly deploy AI in strategically important
areas like R&D, intelligence gathering, and military strategy.

○ If even one region deploys superhuman AIs without any human restrictions then,
absent bottlenecks from raw materials, I believe that their technological
capabilities, military power, and physical infrastructure would soon be growing
extremely quickly.

○ We should coordinate to avoid fast deployments of this kind.
● I’m unclear whether Impact Distributing Delays will happen once AI intelligence exceeds

that of humans.
○ Firstly, there’s the risk of AI takeover.

■ If AI takes over, the “humans are cautious” source of Impact Distributing
Delays will be removed.

■ If the AI makes a sudden successful takeover attempt, then its impact on
the world would increase very suddenly. It would be a case of Diminishing
Delays.

○ Secondly, there’s the possibility that aligned AI becomes capable enough to
overcome a previous barrier to deployment.

■ Perhaps organizations are biased against incorporating new technologies
to their workflows, but AI advisors improve their decision making.

■ Perhaps people were scared of deploying advanced AI, but superhuman
AI shows them compelling evidence that there is no downside risk.

■ Perhaps deployment was previously blocked by incumbent workers and
capital owners worrying about losing their relative position in society. But
then aligned superhuman AI proposes a deployment plan that is in
everyone’s interests and pitches it extremely convincingly.

■ Perhaps deployment was previously bottlenecked by human bureaucratic
processes, but aligned superhuman AI invents technology for uploading
humans to computers so they can think 1000X faster when working.

■ Again, these would be examples of Diminishing Delays.
■ Importantly, the effective FLOP gap was defined to hold constant the

necessary deployment delay.
● The definition of “AI that could readily automate x% of tasks”

bakes in that it would be profitable to automate each task with <1
year of engineering and rearranging work flows.

● But actual deployment delays may get closer to necessary
deployment delays as AI advances.

● Growing Delays seems possible if we become increasingly cautious about deploying
increasingly advanced AI. Though, as discussed above, AI takeover or competitive
dynamics might curtail this once AI is above human-level intelligence.

My bottom line here is these delays:

https://www.openphilanthropy.org/research/could-advanced-ai-drive-explosive-economic-growth/
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● Will probably slow down impact takeoff speed, at least until AI is above human-level
intelligence. But competitive dynamics could prevent this from happening in certain
strategically important fields.

● Might significantly speed up takeoff speed, due to sufficiently capable AI removing
barriers to takeover (either takeover from misaligned AI, or aligned AI removing
deployment barriers).

One important feature of this kind of deployment delay is that they increase the gap between
“level of AI that has been integrated into the economy and thus empowers people,
organisations, governments, etc” and “level of AI available to the much smaller group of actors
who control SOTA AI”. I think it’s notable if this gap becomes very large. It massively increases
the relative power of a very small group of actors.

Deployment delays that do delay future AI progress.
These deployment delays affect both capabilities takeoff speed and impact takeoff speed.

They will tend to make capabilities takeoff speed slower. For example, section 5 described the
following feedback loop in software R&D:94

(A) Better software → train better AIs → [delays] → automate more tasks in software R&D →
better software

If there are delays to deploying AIs in software R&D then this feedback loop will take longer to
build up momentum, software progress will be slower, and we’ll take longer to cross the effective
FLOP gap.

How big would these delays be? My guess is that deployment delays in hardware R&D,
software R&D and chip manufacturing will be significantly smaller than in the general economy
(e.g. months rather than years) because the specific candidate delays (regulations, political
resistance from workers, people distrusting AI) seem less applicable in these contexts where
AIs aren’t directly interacting with human customers. This is just a guess though; this is another
important subquestion that I haven’t investigated.

If there are Diminishing Delays to deployment, then that could cause (both impact and
capabilities) takeoff to be harder. In an extreme case, if the above feedback loop had very large
deployment delays until we had AGI, but then had no further delays, then software would
suddenly start increasing extremely rapidly at that time.95

95 Whether this example counts as a “fast takeoff” would depend on the metric you’re using. If you’re
using the serial time metric “time from AI that can perform 20% of cognitive tasks to AGI” then the delays
in this example make takeoff slower. But if you’re using the metric “ratio between successive doubling
times of total cognitive output” then the delays in the example might make takeoff faster: the doubling time
after AGI would be very quick compared to the doubling time before AGI.

94 I’ve slightly simplified this feedback loop compared to the presentation in section 5.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.kzvszic7a9dr
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Overall, I’d guess that delays of this kind suggest takeoff will be slightly slower than the
predictions of the FTM.

Unmodelled bottlenecks to developing AI systems
The last section considered delays that occur after “we’ve developed this AI” and before “we’ve
deployed it wherever we can”. This section considers delays to developing AI systems in the
first place.

The takeoff speeds framework of this report leans strongly on the view that software and
compute are the key inputs to AI development. It assumes an AI is trained once enough
2020-FLOP is used to train it; and 2020-FLOP equals physical FLOP multiplied by the quality of
the software.

But perhaps AI development will be bottlenecked by a lack of training data. It is often possible to
use software and compute to generate data: we can apply transformations to training data to
generate more data, or train in simulated environments.96 But, especially if human-labelled data
or data about the actual physical world is required, better software and compute may be unable
to compensate.

The Bio Anchors report suggests this won’t be a major issue but could cause several years of
delay.97 If so, this bottleneck could prevent a takeoff happening in <3 years but probably
wouldn’t prevent a takeoff happening in 5 - 10 years. On the other hand, if data bottlenecks are
removed very suddenly, takeoff might be faster than what I’m forecasting here.

Are there crucial inputs to AI development other than software, compute and data? Bio Anchors
raises the possibility that wall-clock time for training could be impractically large, but points to
evidence that data parallelism allows us to scale up training runs massively, while only
increasing the number of steps of gradient descent slightly or not at all. Significant engineering
effort may be required hard to scale up data parallelism, but I have tried to account for this as a
barrier to rapidly increasing the fraction of global FLOP used on a single training run. To my
mind, this consideration speaks against takeoff happening in a few months, but not against it
happening in a few years.

In addition to these comments about specific candidate bottlenecks, I have some general
thoughts about how to think about inputs to AI development ignored by this framework. These
thoughts apply to the above bottlenecks, and to others I haven’t discussed.

97 Ajeya Cotra writes “On balance, I expect that training data and environments are likely to be available
roughly around the time that the requisite computation is affordable, but I do consider it plausible that
data/environments will cause several years of delay, particularly if high-compute and high-data
hypotheses are true.”

96 See discussion from Bio Anchors.

https://docs.google.com/document/d/1cCJjzZaJ7ATbq8N2fvhmsDOUWdm7t3uSSXv6bD0E_GM/edit#heading=h.97dqauq1s8b8
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.a4x4hg3upow6
https://docs.google.com/document/d/1cCJjzZaJ7ATbq8N2fvhmsDOUWdm7t3uSSXv6bD0E_GM/edit#heading=h.9zg431cliphl
https://docs.google.com/document/d/1cCJjzZaJ7ATbq8N2fvhmsDOUWdm7t3uSSXv6bD0E_GM/edit#heading=h.bjqp7nxsk34g


65

● Most of the dynamics I’ve modelled for compute and software will apply to other
inputs to AI development.

○ The key dynamics I’ve modelled are i) the effect of fast rising human investment,
and ii) the effect of incremental AI automation.

○ These same dynamics would affect the growth of any other inputs to AI
development. For example, assuming data is an important input, I expect that in
the run-up to AGI there will be large human investments in gathering data and
pre-AGI systems will be used where possible to gather data (e.g. AIs controlling
drones that take photos).

○ This makes me think that modelling these dynamics for an additional input (other
than compute and software) wouldn’t change the results very significantly.

■ An important question here is how much AIs can help with the additional
input. AIs are plausibly very well placed to perform hardware and software
R&D, as they load heavily on cognitive abilities. By contrast, cognitive
skills seem less important for data gathering.

○ Qualifier: A key dynamic that may not apply to other areas is “these inputs are
already growing very quickly”. This is true of hardware and software, but may not
be true of (e.g.) data.

● If you think some omitted factor will result in long AI timelines, including it would
probably result in slower takeoff

○ For example, suppose you think data requirements are so severe that we won’t
get AGI before 2060.

○ This makes it more likely that, even after we get a startpoint AI (for me this is AI
that performs 20% of cognitive tasks), lots of work must still be done to get
enough data to train AGI. In which case there will be more time between the
startpoint AI and AGI, so slower takeoff. 98

● If a bottleneck could be removed quickly, it could result in a faster takeoff.
○ Suppose the software and compute for AGI is in place, but another factor

bottlenecks progress well below AGI. Then quickly removing that bottleneck
would cause a fast increase in AI capabilities up to AGI.

Overall, my best guess is that someone who believes I’m omitting important inputs to AI
development should put less probability on the fastest takeoff scenarios of the model. The
fastest takeoff scenarios are the most vulnerable to being blocked by a few years of delay. But
beyond this, I don’t see this as a general reason to think the framework is biased in either
direction.

98 We can think of this in terms of a generalised effective FLOP gap. We could apply the same concept to
another input. E.g. we could define the “data gap” as the amount by which our data sets must improve to
go from “automate 20% of cognitive tasks” to AGI. One important constraint on the effective FLOP gap is
the training FLOP for AGI; it places an upper bound on the effective FLOP gap. Similarly, a constraint on
the data gap would be the difficulty of getting good enough data to train AGI. If this was very difficult, the
data gap could be very larger which, by analogy with the effective FLOP gap, would result in a slower
takeoff.
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There might be a discontinuous jump in AI capability
The majority of my probability mass is on scenarios where AI capabilities improve smoothly as
we cross an effective FLOP gap whose size is 1 - 8 OOMs of 2020-FLOP.99 That is, I’m
assuming that AI capabilities increase continuously with additional inputs of compute and
software R&D.100

An extremely discontinuous view of takeoff can be (hackily) represented in this framework by
using a very small effective FLOP gap. With a sufficiently small effective FLOP gap, we can go
overnight from “~0% of cognitive tasks automated”101 to “~100% of cognitive tasks automated”.
With this assumption, and the assumption that you can’t trade off training compute and runtime
compute,102 you can derive the conclusion that an intelligence explosion happens within just a
few days.

This appendix discusses discontinuities in more detail, in the context of the views of Eliezer
Yudkowsky and Nate Soares, and explains why I put ~6% probability on a substantial
discontinuity in AI progress.

Focuses mostly on the transition to AGI rather than the aftermath
This framework is mostly geared towards forecasting the transition from today’s world to a world
where AI can automate ~all cognitive tasks (AGI). It is less well placed to reason about growth
in the aftermath of AGI.

Why? The task-based model represents AI progress via the ability of AIs to (collectively)
perform an increasing fraction of value-weighted cognitive tasks. An improvement in AI
capabilities is represented by the ability to perform additional cognitive tasks. But after we have

102 If you can trade these off then takeoff takes months even with the assumption of no effective FLOP
gap. I discuss a model of this kind in an appendix.
Here’s the intuition behind the result. Suppose you can’t do the tradeoff and have loads of runtime
compute lying around. Then one day you 2X your training run and go straight from “AI can perform 0%
tasks” to “100% tasks” and you can run 100s millions of AGI. But if you can do the tradeoff then at some
earlier time you will have been able to perform 100% of tasks by using a huge amount of runtime FLOP.
Each ‘AGI equivalent’ will have taken lots of compute to run, but because you have so much compute
lying around you can do it. So initially, your AGI workforce will be smaller than your human one, because
it’s so compute-expensive to run. Then as your training runs get bigger, you’ll need less runtime compute
and you’ll be able to run more and more AGIs. But you won’t go from nothing to millions of AGIs
overnight.

101 Recall that I’m weighting these cognitive tasks by economic value in 2020.

100 More precisely, I’m assuming “% cognitive tasks performed by AI” in software R&D, hardware R&D,
GWP (tasks for directly producing goods and services) improve continuously as the 2020-FLOP used in
training runs increases. And I’m also assuming that FLOP/$ and 2020-FLOP per FLOP (i.e. software)
increase continuously with inputs to hardware and software R&D.

99 This is encoded in the assumption that cognitive tasks are distributed fairly smoothly on a graph of
log(2020-FLOP).

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.vi3ts6fm4xhw
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.dor321f7pjrl
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automated all cognitive tasks, this way of representing AI progress does not work. There are no
additional tasks for AI to learn.

I don’t think this is a significant drawback for a few reasons:
● The FTM does allow AI to perform the fixed list of tasks increasingly efficiently by doing

bigger training runs after AGI, and this dynamic can help to cause explosive growth in
cognitive output. Indeed, when assessing whether a software only singularity might
occur, I take into account the prospect of training increasingly intelligent AGIs.103

○ Even if you think larger and smarter brains will enable AGIs to do truly amazing
things, you could in principle represent this via very large efficiency benefits from
doing bigger training runs after AGI.

● I think that the ultimate origin of any fast takeoff is likely to reside in the transition to AGI.
This is because I think that the internal dynamics of the world after AGI alone are
unlikely to lead to a fast takeoff by themselves, absent a sufficiently quick transition to
that world. I explain my thinking in this appendix.

● I think things will be going pretty crazy by the time we have AGI, and this is also
supported by the model outputs (e.g. >30% GWP growth, total cognitive output >100X
what humans could do without AIs, extremely fast hardware and software progress).
This suggests to me that the majority of the most strategically significant milestones (in
terms of positively influencing the long run trajectory of AI) will be crossed before we get
to AGI.

I’m not sure how modelling the aftermath of AGI in more detail would affect takeoff speeds. I can
imagine some models of the benefits of “more qualitative intelligence” might have important
implications that my model is missing.

Implies GWP growth is sure to accelerate eventually
The growth model I’m using here implies that developing AGI is certain to significantly
accelerate GWP growth. This is the implication of nearly all growth models that represent AGI
via the automation of all tasks previously performed by human labour (including R&D tasks).

However, most economists don’t believe that AGI would have this effect on growth.104 Some
economists explained their reasons in reviews of my report on AI and growth. Their reasons can
often be characterised as involving bottlenecks that slow down growth. For example:

104 In the most comprehensive survey of economists to date, they assign low probabilities to significant
increases in growth (more). Unpublished surveys find that, even assuming that we develop machines that
can perform all economically relevant tasks more cheaply than humans, economists still assign low
(<20%) probabilities to significant increases in growth (annual global growth of GDP/capita >10%).

103 [Explain the FTM assumptions about training larger models after AGI in general. Before AGI, larger
models can perform new cognitive tasks. After AGI, can larger models perform existing tasks more
efficiently?]

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.89h04ai7mpg3
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.89h04ai7mpg3
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.zdfvbdepj7yk
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.89h04ai7mpg3
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth#AppendixH
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth#ExpertOpinion
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● Historically growth has required huge physical infrastructure projects (electricity, water
systems, roads). Even with billions of AGIs, there would be bottlenecks to doing these
projects 10X faster.105

● Even if AI increases the quality and quantity of many products, there will be some
products it won’t improve quickly and these will bottleneck growth.106 One specific
hypothesis here is an intrinsic preference for human-produced products that AI, by
definition, can’t provide.

● People don’t want new products to be introduced too quickly as it takes them a while to
adjust; this limits the rate at which new products can be introduced and thus the rate of
economic growth.107

Assessing these arguments is important, but beyond the scope of this report.108 For now I will
simply say that:

● To the extent you buy these objections, they are also objections to a fast takeoff. (If
bottlenecks prevent growth ever accelerating, they will to an even greater degree
prevent it from suddenly accelerating.)

● In general, these objections don’t seem very relevant to capabilities takeoff. They seem
to target the link between high AI capabilities and impact (suggesting that bottlenecks
will get in the way), without disputing the capabilities themselves. (Although impact can
feedback into capabilities, as discussed above.)

● For impact takeoff, we can distinguish between fast takeoff in GWP vs other strategic
areas (e.g. military power, total cognitive output, the level of SOTA technology).
These objections, to me, seem much more relevant to GWP than to other strategic
areas. (Justifying this claim is important, but beyond the scope of this report.)

● It’s possible the people making these objections aren’t truly imagining AI that can do all
tasks as well as a person. I and others have sometimes had this impression when
speaking to economists, and some economists have reported that they had previously
not been conducting the thought experiment properly.

Overall, this adds some hazy uncertainty to the picture by raising the possibility that the growth
model I’m using is fundamentally flawed, and this uncertainty pushes towards slower takeoff (or
no takeoff at all). Personally, I’m not as moved by this kind of objection, because I don’t expect
them to be correct in areas of strategic importance (military power, total cognitive output, level of
SOTA technology).

I analyse why this report’s framework can predict fast takeoff in GDP, in the context of what
generic growth models say about takeoff speed, in this appendix.

108 My report Could Advanced AI Drive Explosive Economic Growth explains my overall take on these
issues, including on various objections to explosive growth. In addition, I respond to the specific
objections to explosive growth made by reviewers; I appended my responses to their reviews. I hope to
do or commission more work investigating these issues.

107 Phil Trammell suggests this, and the previous bullet, could bottleneck growth here.
106 See Dietrich Vollrath’s review, starting here, for something along these lines.
105 See Ben Jones’ review, starting here,  for something similar to this.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.u75hzncbwrts
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.u75hzncbwrts
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.89h04ai7mpg3
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth#ObjectionsToExplosiveGrowth
https://www.openphilanthropy.org/could-advanced-ai-drive-explosive-economic-growth#AppendixH
https://docs.google.com/document/d/1MFpLJF-uBepH86awgI5sspRuVVu8pzHw2cLGtOD4bWQ/edit#heading=h.o1vrd8wi8nsi
https://docs.google.com/document/d/1NScJzPLzLjYRkKJOjwlrPFO8PJ1xXUX81ksP7GwtCEU/edit#heading=h.6r2mfadywmn0
https://docs.google.com/document/d/1jP9Bb6J6BXH5v6EshsPF2NE1GiWatPxUUrK9wDEpTqA/edit#bookmark=id.6xbttx2tkffy
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The FTM assumes that investment in AI R&D vs other areas
grows exogenously, rather than modelling actors’ incentives.
Society will allocate resources between the three buckets of hardware R&D, software R&D and
buying chips for training AI. These resources will be allocated according to the incentives faced
by different actors (AI labs, governments). I have not tried to model these incentives. Instead,
I’ve assumed that investment rates grow at their current rate until “wake-up” and then grow
more quickly. I also placed a cap on the % GDP invested in each bucket and a cap on the
fraction of chips used on the largest training run before and after “wake up”.

These “exogenous” growth rates are my guess at how the incentives will fall out, informed by
historical analogues. But more detailed thinking about the incentives could reveal that the
investment dynamics are significantly different than in my assumptions.

This is especially likely for parameter values that are very different from my best-guess; then the
investment patterns that “seemed sensible” to me in scenarios like the best-guess scenario
might not hold. For example, if AGI training requirements are extremely high and there’s a large
effective FLOP gap, then AI automating 6% of cognitive tasks might not cause “wake up”
because it would look like a continuation of the slow pace of automation that has already been
happening before AI.

● Doesn’t model actors’ incentives to invest in training runs and AI R&D in detail, but
instead makes hacky assumptions about how investments change before and after the
world “wakes up” to AI’s full economic and strategic potential.

Elides the distinction between capabilities takeoff speed not
impact takeoff speed
By assuming immediate deployment of AI, the FTM implicitly assumes that AI’s impact moves in
lock-step with its capabilities. That is capability takeoff speed is the same as impact takeoff
same. (More on the difference between these two.)

Other
There are a number of additional limitations to the FTM. Here I briefly list a few salient ones:

● Doesn’t model changes in (degree of substitutability between different economic tasks)ρ
over time despite the fact that short-run estimates of are lower (less substitutable) thanρ
long-run estimates of (which suggest , as in Cobb Douglas).ρ ρ = ~0

○ I’ve erred much more towards the short-run estimates as I’m interested in the
prospect for fast takeoff, but this means I may underestimate the long-run effect
of AI on GWP.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.9ii5ypbwnkp0
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● Assumes human workers are immediately reallocated to new tasks.
○ When AI can perform a new task, FTM assumes human workers are immediately

reallocated to non-automated tasks.
○ In many contexts, this is reasonable. E.g. text completion AIs save everyone

some time and allow them to spend more time on other tasks.
○ But if AIs automate all aspects of a job, then the workers won’t have other tasks

that they can spend more time on instead. In this case, there may be months or
years before workers get new jobs.

○ This limitation will lead takeoff to be slower than the predictions of FTM.
● Doesn’t model robotics. This framework focuses on the automation of cognitive tasks.

But an important part of takeoff will be the way in which robotics advances alongside and
complements progress in disembodied AI.

○ If robotics keeps up, then the capital bottlenecks I’ve discussed may be less
severe than the FTM is predicting. (I don’t expect robotics to keep up because
the fast pace of progress in hardware and software is very unusual and so I
expect the number of disembodied AGIs to double more quickly than the number
of robots).

○ Relatedly, the FTM doesn’t model physical human labour. It assumes tasks are
either done by cognitive labour or physical capital. For this reason, I use an
unusually high capital share (50%).

● I list some additional minor weaknesses here.

This is the end of the main body of the full report. Part 3 contains additional appendices.

https://docs.google.com/document/d/1HuzkG0xUjoW60farhWvWk-paxbqmwXaqtfmL68amFwM/edit#heading=h.p3eh4ibwydo6
https://docs.google.com/document/d/1DZy1qgSal2xwDRR0wOPBroYE_RDV1_2vvhwVz4dxCVc/edit#heading=h.b7u38ytodi7i
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Other appendices are at the bottom of part 1.

Additional appendices

One-dimensional model of takeoff speed
Many thanks to Paul Christiano for introducing me to these ideas.

Summary
The one-dimensional model of takeoff measures human and AI cognitive output along just one
axis. Total output = human output + AI output. This contrasts with the Full Takeoff Model, which
considered AI performance and multiple different tasks.

The one-dimensional model estimates how quickly AI output will grow around the human range
via there being more AIs and cleverer AIs. The estimate is based on assumptions about the
rates of progress in software and hardware, and about how AI output scales with model size.

When we define takeoff as the time from “AI output is 1% of human output” to “AI output is equal
to human output”, the 1-d model implies that takeoff will take ~5 months to ~1.4 years.

What is the one-dimensional model?
The full takeoff model in this report (FTM) analyses AI capabilities by asking: what fraction of
value-weighted tasks can AI automate? Implicit in this is a multi-dimensional view of AI
capabilities. There are many different tasks. AI is better at some tasks than others. AI can
replace humans at some tasks, but not at others.

In economic models with many tasks, there are diminishing economic returns to additional
output on any individual task. Total output (i.e. GDP or R&D progress) depends on i) the output
on each task and ii) how different tasks combine together to produce total output.1

[As a toy example, let’s pretend there are only two tasks that are equally important to production. The first
task is performed by humans and has output H, the second task is performed by AIs and has output C. If
the tasks combine together to make total output Y via a Cobb Douglas formula then:

𝑌 = 𝐻0.5𝐶0.5

1 Section 6 discusses Cobb Douglas and CES production functions for calculating total output from
task-specific outputs. A theme is the extent to which low output on just one task can ‘bottleneck’ total
output.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.e67d5t5g3z3e
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#
https://drive.google.com/drive/folders/1qVPd8M7Iy2jK1jmXNOKVhG4dGRtkWbL2?usp=sharing
https://docs.google.com/document/d/1os_4YOw6Xv33KjX-kR76D3kW1drkWRHKG2caeiEWzNs/edit#
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.va1y4xnp4m8b
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#heading=h.8eeqio72s4rv


In the FTM there are dozens of such tasks, with the fraction being performed by AI rising over time.]

I think the multi-dimensional view of AI capabilities is correct; AI is much better at translation
than teaching physics.

However, you can instead model takeoff speeds using a one-dimensional view of AI capabilities.
In such a model, there is only one task that creates output. As AI improves it becomes more
productive (per FLOP) at this task. This model can be motivated by pointing to how training
bigger foundation models improves performance across a very wide range of downstream
tasks. One component, like a g-factor for AI intelligence, explains cognitive ability in diverse
domains.

To calculate total output you simply sum human output at the task (H) and AI output at the task
(C):

𝑌 = 𝐻 + 𝐶

Initially, C is much smaller than H. But C grows faster than H, and by the end of takeoff it is
much larger than H. C increases due to a mixture of cleverer AIs and more AIs.

When C first becomes close to H (e.g. C = 0.1H), AIs start contributing a meaningful amount to
AI R&D. (This will happen earlier if the fraction of AI output directed towards AI R&D is larger

https://en.wikipedia.org/wiki/G_factor_(psychometrics)


than the fraction of human output, as I think is likely.2) This increases the rate of AI R&D
progress and so accelerates the growth of C. Growth increases until you hit physical limits. This
is shown in the dotted line above.

How does the model work mathematically?
The crucial question is: how quickly does AI output grow? In my preferred one-dimensional
model, AI output depends on three things:

1. Runtime FLOP. The FLOP available to run AI.
a. The simplest choice is to assume that output is proportional to runtime FLOP.

2. Training run size. The largest training run done to date. Bigger training runs develop
more capable AIs that produce more output per FLOP at runtime.

a. The functional form I favour is: each doubling of training run size doubles output
per FLOP N times.

b. This functional form has intuitive behaviour3 and is implied by results from ML toy
experiments that independently vary runtime and training FLOP.4

3. Software. The algorithms available for training and running AIs.
a. As elsewhere in the report, I measure software in units whereby doubling

software has the same effect as doubling the amount of hardware available for
training AIs and running AIs. So doubling software is equivalent to doubling
runtime FLOP and doubling output per FLOP N times.

This implies the following equation for AI output:

C = (software * training FLOP)N (software * runtime FLOP)

The first part of this expression corresponds to “how clever are AIs?”, the second part to “how
many AIs can we run?”.

We can then split FLOP into $ spend and FLOP/$:

C = (software * FLOP/$ * $ on training FLOP)N (software * FLOP/$ * $ on runtime FLOP)
C = software N + 1 * FLOP/$ N + 1 * $ on training FLOP N * $ on runtime FLOP

4 Andy Jones (2021): “Knowing now that compute can be spent in two places, at train time and test time,
the immediate question is: how do these two budgets trade off? … the trade-off is linear in log-compute”.

3 Or, at least, I haven’t noticed any unintuitive consequences of the definition, unlike for obvious
alternatives. If a doubling of training run size merely increased output per FLOP by a constant absolute
amount, then there would be very sharply diminishing returns to bigger training runs; increasing training
run size (and model size) would have negligible benefits past a certain point. Conversely, if each absolute
increase in training size doubled output per FLOP, then each doubling of training run size would cause
~2X the performance improvement of the previous doubling.

2 When we are close to AGI, I expect people to want to substantially increase investments in AI R&D
compared to today. It’s hard to quickly redirect human labour to this end; it requires retraining. But AI
output can be very quickly redirected towards AI R&D by simply using a greater proportion of compute to
run AIs that do AI R&D.

https://arxiv.org/pdf/2104.03113.pdf


Then the growth rate of AI output is:

g(C) = (N + 1) * g(software) + (N + 1) * g(FLOP/$) + N * g($ on training FLOP) + g($ on runtime
FLOP)

We could additionally specify:
● How do g(software) and g(FLOP/$) depend on the investments in software and

hardware R&D?5

● In each timestep, what fractions of human output and AI output are spent on training
FLOP, runtime FLOP, software R&D, and hardware R&D?

What does this model imply about takeoff speeds?
Here I define takeoff as the time from AI output being 1% of human output to it being equal to
human output.6 On my quick analysis, the 1-d model implies that takeoff will take ~5 months
to ~1.4 years.

6 This definition is different to the main definition used elsewhere in the report, in a direction that biases
the results somewhat towards slower takeoff.

The main definition used elsewhere in the report is “time from AI that can perform 10% of cognitive tasks
to when we can run 10 billion AGIs”. This definition doesn’t directly translate to the 1-d model, where
there’s only one task.

A rough translation to the 1-d model would be “time from AI increasing output by ~10-20% to AI
increasing output by ~4X”. (Automating 10% of cognitive tasks raises cognitive output by ~10-20%. If
there are ~3 billion human workers today, having 10 billions AGIs would increase that number by ~4X.)

So there are two definitions we could use for the 1-d model.
1. The definition I use in this appendix: time from AI increasing output by 1% to AI increasing output

by 2X.
2. The rough translation from the main definition used elsewhere: time from AI increasing output by

~10-20% to AI increasing output by ~4X.

Takeoff is faster according to definition 2. Why? In the 1-d model, output doubles extremely quickly by the
time AI has doubled output. (This is because a large fraction of the extra AI output can be directed to AI
R&D, increasing annual R&D inputs by >10X.) So the endpoints of both definitions happen at roughly the
same time. But the startpoint for definition 1 is a fair bit earlier.

Why did I not just use definition 2? My reason was that, in the 1-d model, AI R&D is already accelerating
by ~5X by the time AI has increased GDP by 10%.* This felt too dramatic for a startpoint.

*This acceleration is much greater in the 1-d model than in the Full Takeoff Model. Why? In the 1-d model
AI output is a separate pot that can potentially all be invested in AI R&D, significantly increasing R&D
inputs. Whereas in the Full Takeoff Model AI is initially complementary to humans so can only enhance
the output of the small number of human AI R&D workers.)

5 As in these subsections of section 4

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.9vgai87ecxln
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.hyxtfr70xh92


Below I first discuss plausible values for parameters determining the growth of AI output and
then apply those numbers to get conservative and aggressive estimates of takeoff speed.

Notes on possible parameter values

● g(software)
○ Section 4 assumed software had been doubling every 32 months (26% growth),

although data from AI and Efficiency implies 52% growth.
○ This could be faster as we approach AGI due to people making large investments

in anticipation, or slower if we cannot sustain investment growth at the current
fast pace.

● g(FLOP/$)
○ FLOP/$ of GPUs have been doubling every ~2.5 years (28% growth).
○ I expect this to be faster as we approach AGI, as total hardware R&D

investments have grown slowly at only ~4% over the last ~15 years.
● g($ on training FLOP)

○ g($ on training FLOP) = g($ on FLOP globally) + g(fraction of FLOP on the
largest training run)

○ Above I noted that I expect there to be ~1-3 OOMs room to scale up the fraction
of FLOP on training runs by 2030, and think this fraction could potentially
increase very quickly. I guessed 1 OOM every two years after “wake up”, with
massive uncertainty, which implies g(fraction of FLOP on the largest training run)
= 110%.

○ Above I guessed that we might increase $ on FLOP globally at ~22% (~3 year
doubling time), with a range of 10% - 40%.

● g($ on runtime FLOP)
○ g($ on FLOP globally) + g(fraction of FLOP on running AIs)
○ I think the fraction of FLOP on running AIs has less room to grow than the

fraction on training. Probably <1 OOM of growth by 2030, as AI chips are
forecast to be $100s of billions while semiconductors total will be ~$1tr.

○ It can also grow less quickly, as the training fraction (but not the runtime fraction)
can grow via using a larger fraction of AI chips for a big training run.

○ Below I assume g(fraction of FLOP on running AIs) = 0 for simplicity.
● N

○ Recall the meaning of this is: each doubling of training run size doubles
output-per-FLOP N times.

■ With Chinchilla scaling, doubling the training run corresponds to half a
doubling of model size. So we can reframe this as: each doubling of
model size doubles output-per-FLOP 2N times.

○ This is a crucial input to the one-dimensional model, and the only one not
discussed elsewhere in this report.

○ What does the evidence say about this?
■ In short, brain size – IQ – output correlations suggest N = ~2; toy ML

experiments suggest N = ~1.

https://openai.com/blog/ai-and-efficiency/
https://www.lesswrong.com/posts/c6KFvQcZggQKZzxr9/trends-in-gpu-price-performance
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.a4x4hg3upow6
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.18uhy85mjtax
https://docs.google.com/spreadsheets/d/1oGcGZCKxT_N6AswkR7t1S5I72p0m5kU8elrX8zIsD7I/edit#gid=1219502117
https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry


■ See the full BOTECs here.
■ Here’s a bit more explanatory detail:

● Brain size – IQ – output correlations
○ All kinds of things might affect the extent of variation in

human performance, like amount of practice or random
mutations. What we care about is: How far do you move
through this range by training bigger models?

○ One way to get at this is to ask how brain size in humans
correlates with IQ and how IQ correlates with productivity
at downstream tasks. This should get at the “AI g-factor”,
ignoring other causes of variation.

○ A bigger brain has more ‘training FLOP’, more ‘runtime
FLOP’ and more ‘output’, so estimating the change in each
can get you an estimate of how additional training FLOP
increases output per FLOP at runtime.

○ How big is the effect?
■ I argue in a separate appendix that a 10% increase

in brain volume causes a 4-5 extra IQ points. Given
that brain size seems anti-correlated with neuron
density, I’ll assume that 10% more brain FLOP/s
increases IQ by 5.

■ A Garrett Jones article notes that an IQ point is
associated with a ~6% gain in productivity across
countries.7

■ The sheet shows these assumptions imply that a
doubling of human brain FLOP/s would double
output ~3 times.

■ This is ~2 doublings of output per FLOP at runtime.
■ I’ll also assume doubling human brain FLOP/s

doubles training FLOP. Why? When humans have
bigger brains they still receive the same amount of
‘training data’ during their lifetime learning, so brain
FLOP/s is proportional to training FLOP.

■ So we get ~2 doublings output per FLOP from 1
doubling of training FLOP: N = ~2.

● Toy ML experiments
○ Andy Jones (2021) trained AlphaZero to play Hex,

independently varying the training and runtime compute by
changing the model size and the depth of tree search.

7 This association is probably not all causal due to common causes of high average IQ and high national
productivity. On the other hand, the 6% averages across all jobs but the causal impact of IQ on
productivity is probably much stronger in the most cognitively demanding roles (e.g. research). Some of
these roles (e.g. automating AI R&D) are particularly relevant for takeoff speeds.

https://docs.google.com/spreadsheets/d/1rY1cKRYWX0x-2z-927SDYRyHjmIcrNFuptKHvNwa-1k/edit#gid=1834427578
https://aiimpacts.org/is-the-range-of-human-intelligence-small/
https://aiimpacts.org/is-the-range-of-human-intelligence-small/
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.bxslybu92bzi
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.ffszm2joli65
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#bookmark=id.ffszm2joli65
https://mason.gmu.edu/~gjonesb/JonesADR
https://arxiv.org/pdf/2104.03113.pdf


○ He found that “for each additional 10X of train-time
compute, about 15X of test-time compute can be
eliminated”.

○ This implies that each doubling of training FLOP doubles
output per FLOP 1.2 times. N = 1.2.

● Other sources of evidence?
○ ML scaling in narrow domains. It should be possible to look

at how increased training compute improves performance
metrics in narrow domains like Go and Chess, map the
performance metrics to standard deviations of human
ability, map this to standard deviations of IQ (1 sd = 15 IQ
points), and then map this to increases in output as above.

○ Observed training-runtime tradeoffs in LMs. Language
model performance can be improved significantly merely
by increasing runtime compute, e.g. by chain-of-thought
prompting or by generating multiple solutions and choosing
the most common. You could quantify how much extra
runtime compute corresponds to more training compute
(via training a bigger model). This would essentially be
repeating the toy ML experiments in the context of LMs.

○ Cognitively loaded domains. If output scales very steeply
with IQ in certain key domains that will be important for AI
takeoff (e.g. software engineering), that gives us reason to
use a larger value for N.

Calculating AI takeoff speed

The following table shows the doubling time for AI output from conservative inputs and
aggressive inputs.

● The conservative inputs take recent growth rates (discussed above) and assume there’s
no longer room to increase the fraction of FLOP in the largest training run.

● The aggressive inputs incorporate a speed-up due to rising investment (/different
measurement in the case of software). Note that the growth of the fraction of FLOP on
the largest training run is still not that aggressive.

Doubling time (years)

Quantity Conservative Aggressive

Fraction of FLOP on
largest training run

Not growing. 1



$ on FLOP 3 2

FLOP/$ 2.5 2

Software 2.5 1

N
Double training FLOP →
double output per FLOP N
times

1 2

AI output 5 months 1.5 months

If we define AI takeoff as the time from AI output being 1% of human output to it being ~equal to
human output, that will be ~7 doublings which is ~3 years for the conservative case and ~10
months for the aggressive case (calcs).

This gives us the growth rate of AI output before accounting for AI accelerating AI R&D (i.e.
hardware and software R&D). If we take this into account, then things will be quicker.

By the time AI output is 1% of human output, it will plausibly already be noticeably accelerating
AI R&D.  How much depends on the relative fractions of AI output and human output invested in
AI R&D.8 If 1% of human output is invested but 50% of AI output, the speedup in AI R&D is
~1.5X. Then once AI output is 10% human output, the speedup in AI R&D is ~6X.

I very hackily assume you get a 1.5X speedup in AI R&D while AI output grows from 1% to 10%
of human output, and a 6X speedup while it grows from 10% to 100%. The result is that the time
from 1% to 100% goes to ~1.4 years in the conservative case and ~5 months in the
aggressive case (calcs row 14).

This is super-hacky in a few ways: ignoring delays printing new chips, estimating the speedup at
two points in the curve, ignoring AI effect on chip production, ignoring physical capital as an
input to production. But it still gives a rough sense of the speed-up: it ~halves the time for AI
takeoff. (Though the result would be different if you thought a larger fraction of human output, or
a smaller fraction of AI output, would be invested in AI R&D.)

What are its strengths and weaknesses?
Strengths:

8 AI software R&D is currently in $10s billions, hardware R&D is ~$100b; even significant increases would
leave their total at ~$1tr, which is ~1% of global GDP.

https://docs.google.com/spreadsheets/d/1rY1cKRYWX0x-2z-927SDYRyHjmIcrNFuptKHvNwa-1k/edit#gid=0
https://docs.google.com/spreadsheets/d/1rY1cKRYWX0x-2z-927SDYRyHjmIcrNFuptKHvNwa-1k/edit#gid=0


● Diverse cognitive abilities are correlated in humans, as captured by the g-factor. Perhaps
AI will be the same.

● Indeed, scaling up foundation models improves performance at diverse downstream
tasks.

● This model is well placed to interpret evidence about brain size – IQ – output correlations
and evidence about trade-offs between runtime and training FLOP.

● Particularly suitable if you expect AI to develop a “core of general intelligence” at some
point and then for us to scale up that core by increasing training FLOP. The hypothesis
of a “core” seems to imply an important one-dimensionality to AI capabilities.

● Also suitable for thinking about time for AI takeoff in specific narrow domains like
cybersecurity, nanotech, persuasion.

Weaknesses:
● Inconsistent with historical data on AI value-add.

○ AI value-add to the economy has not been doubling every 1 - 5 months, as
implied by this model. In fact, the data I’ve seen have a doubling time of ~2
years.

● Ignores task dispersion.
○ AI gets good at some tasks long before it gets good at others.
○ This explains AI’s value-add today! It’s much better at ad recommendation,

translation, ranking articles, etc. than it is at other tasks.
● AI takes decades to move through the human range on narrow-ish tasks like Chess, Go,

translation, digit recognition.
○ The model implies it should take ~1-3 years to move through 4 standard

deviations of human performance in a domain (calcs row 23).
○ I’m not sure how much of a tension this is:

■ I don’t know how quickly AI investments were increasing during this
period. Perhaps the FLOP used to develop and run chess and Go
engines was ~constant during this time. Perhaps research in these areas
was ~neglected for decade-long periods.

■ I haven’t dug into the details of how long it took to move through a
standard deviation of human performance, making a clear comparison
hard. E.g. if it took 12 years for AI move through 8 standard deviations,
that’s consistent with the upper end.

■ You could try to remove the discrepancy by arguing that the scaling of AI
performance with model size will be better around human level than it is
today. E.g. due to the human range unlocking new kinds of capabilities,
or ‘agents’ scaling better than AI tools, or us discovering architectures that
scale better with additional compute. This would reconcile the more
aggressive brain size – IQ – output correlation evidence with the more
conservative evidence from AI playing Chess and Go.

● Ignores many relevant factors like physical capital as an input to production (more).

https://aiimpacts.org/is-the-range-of-human-intelligence-small/
https://docs.google.com/spreadsheets/d/1rY1cKRYWX0x-2z-927SDYRyHjmIcrNFuptKHvNwa-1k/edit#gid=1961190081


Arguments for a “kink” in underlying capabilities

Background
The full takeoff model in this report assumes that AI capabilities progress is “smooth”. As
training FLOP increases, AI gains the ability to perform more and more tasks and there are no
significant kinks in that curve. Like this:

It is striking that you can still get pretty fast takeoff out of this framework, when parameters are
such that the rate of continuous improvement is sufficiently fast.

The one-dimensional model of takeoff, discussed in an appendix, is similar in being fully
continuous + smooth yet still predicting fairly fast AI takeoff.

Clearly though, another possible source of fast takeoff is that the underlying relationship
between “inputs to AI” and “AI capabilities” is not smooth. Like this:

In this example the input is training FLOP. When training FLOP exceeds 1e34 there is a “kink”
and AI capabilities improve significantly more rapidly than before. There need not be a
discontinuous jump to a new capability level, nor need there be a discontinuous transition to the
new regime. All that’s required is that fairly suddenly the rate at which AI capabilities improve
with additional inputs starts to increase much more rapidly.

And, of course, the input to AI need not be “more training FLOP”. It could be that a new AI
architecture is invented such that standard AI software development using this new architecture



leads to much faster progress. You could replace “log_10(FLOP)” with “software development
effort” on the x-axis above.

If there is a kink like this in AI progress, that would give an additional reason to the others in this
report to expect fast takeoff. It can be parsed as a reason to expect a very narrow effective
FLOP gap (or, for the one-dimensional model, as a reason to expect N to suddenly become very
large), but it doesn’t have to be.

Argument based on the chimp-human transition
In my mind, this argument is naturally framed as a reply to Paul Christiano’s rebuttal of an older
argument for fast takeoff. So I’ll first back-up and summarise my understanding of that original
argument and Paul’s reply.

Old chimp-human transition argument for fast takeoff
Humans’ cognitive abilities generalise way further than those of chimpanzees. We discovered
general relativity and flew to the moon despite our brains being ‘optimised’ to hunt in the
savanna. And humans evolved these cognitive abilities in just a few million years, which is very
quick on the timescale of evolution.

So somewhere between chimpanzees and humans there is a large kink in the rate at which
cognitive abilities accrue with additional inputs.

My understanding of Paul’s reply
Yes, humans are much better at science than chimpanzees. And yes, they gained these abilities
remarkably quickly on the timescales of evolution. But that doesn’t mean there was a kink in the
rate at which cognitive abilities accrue with additional inputs.

Another explanation is that evolution was not trying to get chimpanzees to do science.
Chimpanzees [or similarly clever apes] could have been pretty good at science, if evolution had
optimised them for that. They have much of the cognitive infrastructure necessary for doing
science, it’s just not pointed towards that goal.

Given that this cognitive infrastructure was in place already, it’s not that surprising that a few
small tweaks to humans makes them much better at science. All evolution had to do with
humans was redirect that cognitive infrastructure somewhat towards the task of science.

Indeed, the main reason humans are much better than chimpanzees at science is that we more
efficiently accumulate knowledge over generations, learning from each other. Once some useful
knowledge had accumulated, there was strong evolutionary selection pressure on proto-humans
to make them better at flexibly learning from their peers (e.g. via language). This selection

https://sideways-view.com/2018/02/24/takeoff-speeds/


pressure redirected their existing cognitive infrastructure towards skills (e.g. flexible learning,
accumulating culture) that make them better at science. In addition, there were then cultural
evolutionary pressures towards cooperating and innovating. Groups with these behaviours were
successful and so the behaviours became more common, either via expansion or via others
copying the behaviours.9 So there were both evolutionary and cultural pressures redirecting
humans’ cognitive abilities towards cultural accumulation and science.

So the “sudden jump” in human science ability was caused by evolution initially not optimising
them to do science, but then evolution and culture later optimising strongly for science. By
contrast, AI researchers will be specifically optimising AIs to do science (and other important
cognitive tasks) throughout the R&D process. So there won’t be an analogous situation where
AIs have lots of cognitive infrastructure that could be used for science but isn’t.

Here’s an analogy. Until 2020, the world had vaccinated very few people for corona viruses. But
as of July 2022 almost 5 billion people have been vaccinated. Did we hit a “kink” in the ease of
producing additional vaccines with further effort? No. We just redirected our pre-existing
capacity towards the new goal of manufacturing and administering vaccines. In an analogous
way, humans’ pre-existing cognitive infrastructure was redirected towards accumulating culture
and doing science. But there was no “kink” in their cognitive abilities with additional inputs. But
with AI, it will be as if we had always been producing as many vaccines as we could and so
there won’t be the same sudden increase in vaccine production.

New chimp-human transition argument for fast takeoff
I heard this argument from Nate Soares, and he gets full credit for what is good in the ideas
below. He has reviewed this summary, but I doubt that he would fully endorse it.

The above objection was that evolution wasn’t optimising chimps for science, and so it’s no
surprise if humans quickly became good scientists. There was a mismatch between “evolution’s
goal” and “the thing we evaluated humans on”.

Let’s remove this mismatch. Suppose that evolution had in fact been selecting animals for
maximum transport speed, and then let’s evaluate humans on this same metric. (We could use
something other than maximum transport speed and the argument would still go through.)

Evolution would have created cheetahs and falcons and faster animals still. There’s a good
chance it would never have stumbled upon humans. But if it had explored widely enough to do
so, it would have seen humans going from “way slower than the fastest animal” to “orders of
magnitude faster than the fastest animal” in the blink of an evolutionary eye. In a mere few
hundred years – compared to the millions needed to evolve new species – humans would
develop trains, planes and rockets.

9 See Henrich (2017), The Secret of Our Success.

https://press.princeton.edu/books/paperback/9780691178431/the-secret-of-our-success


If we drew a graph of time vs maximum observed transport speed, it would have a very
significant kink in it at the point at which humans first had the fastest transport speed. Before the
kink progress was driven by biological evolution changing genes to help animals fly faster etc..
After the kink progress is driven by the cultural evolution of human civilisation, more specifically
by R&D into planes and rockets etc. Humans overtake the other animals because they stumble
upon cultural evolution, which is ultimately a much faster method for accumulating capabilities
than biological evolution.

The analogy for AI development is that people will be optimising AIs for being personal
assistants, making money, doing science research etc. The trends in SOTA performance at
these tasks may all be smooth. But then, in the blink of an eye compared to the previous rate of
improvement, a new approach to AI will blow these trends out of the water. This new approach
will go from “much worse than SOTA” to “orders of magnitude better than SOTA” in a tiny
fraction of the time previously needed to significantly improve SOTA.

Again, if we draw a graph of time vs SOTA performance, it would have a very significant kink at
the point where the new approach to AI first becomes SOTA. Continuing the analogy, before the
kink progress was driven by the standard methods of improving AI: gradient descent on bigger
and bigger models, better data sets, new tricks like chain-of-thought prompting. But after the
kink progress is driven by an entirely new process which increases AI capabilities much more
rapidly.

Call this new process X. In the analogy, X is to the standard methods of improving AI as cultural
evolution is to biological evolution. Perhaps X is a new learning rule, perhaps it is AIs actively
optimising their cognitive resources, perhaps it’s enhanced coordination between different AIs,
perhaps something else entirely. Importantly, X need not be AIs doing AI R&D or recursive self
improvement - this isn’t what happened with humans.

Hypothetical evolution AI development

What is being
optimised?

Transport speed Benchmark performance

Initial source of
improvement

Biological evolution Gradient descent, bigger models,
better data, better prompts

Later source of
improvement

Cultural evolution
(ultimately, R&D of rockets etc)

X

Key outcome Kink in transport speed when
humans first travel faster than
other animals.

Kink in SOTA AI capabilities when
AI gaining capabilities via X first
overtakes other AIs.



Objections and replies
I’m trying to steel man the objections and the replies here, but Nate Soares may not endorse
what I say on behalf of his argument here.

I’m suspicious about an argument based on a ‘hypothetical’ evolution

Objection: This argument is based on what would have happened if evolution had had the goal
of maximising transport speed. You claim the result that humans would have suddenly blown
other animals out of the water, but we can’t be confident in this when we’ve never actually seen
evolution do this. We haven’t even thought about what might happen in much detail.

Reply: It’s just very obvious that if evolution with this goal had developed humans they wouldn’t
have spent thousands let alone millions of years going from “as fast as the fastest non-human
animal” to “orders of magnitude faster”. And this is enough to establish the key point: transport
speed would have a major kink.

If we take the analogy seriously, we won’t discover X (the new process for improving AIs)

Objection: If evolution had been optimising for transport speed, humans probably just wouldn’t
have evolved at all. They’re not fast, and the attributes they have that ultimately enable cultural
evolution and technological progress aren’t very helpful for transport speed in the short term.

This analogy suggests that even if some process X exists which is much better at improving AIs,
we won’t find it and so there will be no kink in practice.

Reply: Humans will have more foresight than evolution, so might easily find X even if evolution
wouldn’t have.

Human progress is hyperbolic in your hypothetical scenario, so you’d see the kink coming

Objection: Your hypothetical evolution contained a kink because you were graphing the fastest
animal over time. But if we graphed time vs human maximum transport speed, it would be
smooth and hyperbolic.

As levels of human coordination and technology grew continuously, they’d find better and better
ways to travel quickly. (Remember, they’re literally being optimised by evolution to travel quickly
in this hypothetical.) If you were looking at that graph, you’d see the kink coming long in
advance.

Indeed, the thing evolution actually optimised for was (something like) population size; and
human population size did grow smoothly and ~hyperbolically.

So by analogy, if you graph the capabilities of the new approach to AI, they will look hyperbolic
and so you’ll see your kink coming a long way off.



Reply: Firstly, smooth trends in SOTA performance in benchmarks is exactly the kind of thing
slow takeoff people like to extrapolate; if they contain a massive kink that will be very significant.

Secondly, I’m not so sure you’d see a smooth trend in humans (e.g. see here). Some of the
cognitive skills that later cause transport speed to grow very quickly won’t have short-term
effects on maximum transport speed. E.g. language, mathematics, or scientific institutions.
Sure, you might be able to look back and say “humans were continuously accruing capabilities
that ultimately allowed them to build a rocket”, but you won’t know to look at that trend in
advance.

Objection: To your second point, I think language, mathematics and scientific institutions would
all increase maximum transport speed in the short term. Language by improving coordination,
and maths and science by improving humans’ ability to design faster modes of transport. And
remember, within this hypothetical we should be imagining that humans are at every stage
trying very hard to use all their tech to travel as quickly as possible (which isn’t true in the actual
world).

Reply: Even if you have 10,000 years of warning, that’s still nothing compared to the timescales
of evolution, where significant changes often take a million years. And even if some people do
see it coming because they’re looking in the right places, most people won’t.

Objection: We’d have more warning than 10,000 years. Humans took about a million years to
evolve into a species that could do significant amounts of cultural evolution,10 a normal amount
of time for big evolutionary changes. During that time you’d see their rate of improvement at
transport speed (or whatever else they’re being optimised for) increase as they feel the initial
effects of cultural evolution.

By analogy, it would take a few years to initially develop AI that can improve significantly via the
new process X, as “a few years” is the normal time for significant improvements in AI. During
this time you’d observe the rate of AI progress increase as X begins to take hold.

The kink in your hypothetical happens because evolution was hideously inefficient; the AI
development process will be much more efficient

Objection: What’s the core reason that humans can improve transport speed so much faster
than other animals? It’s that biological evolution makes hideously inefficient use of its resources
(animals and their environment). Each generation, it spends almost all these resources each
generation doing an absurdly long and expensive test of how random genetic changes affect
transport speed.

10 E.g. the first control of fire was ~2 million years ago, which is believed to have started a process
whereby humans became increasingly dependent on culturally accumulated knowledge.

https://aiimpacts.org/historic-trends-in-transatlantic-passenger-travel/
https://en.wikipedia.org/wiki/Control_of_fire_by_early_humans


Human R&D gains orders of magnitude efficiency on this by having a person use a good
fraction of their brain power (~1e15 FLOP/s) intelligently designing faster modes of transport. A
lifetime of this work is many OOMs more effective at increasing transport speed than simply
using that person’s life to test how one random genetic change affects transport speed.

So, the kink in transport speed in your hypothetical happens because evolution is hideously
inefficient, so cultural evolution can be many OOMs better.

But the AI development process won’t be comparably inefficient. If we’re spending lots of time
and money to train AIs on some benchmark, we will work hard to ensure the training resources
are used efficiently to improve AI performance. For any candidates for X we can think of, we’ll
already be building them into the AI development process. So there simply won’t be room for
some new process to increase the rate of AI improvement by as many OOMs. In which case,
there won’t be a comparable kink in AI capabilities.

To summarise, evolution was never like “how can I make this optimisation process more
efficient?”. So it’s not surprising that it stumbled upon a way more efficient process: cultural
evolution. But we are trying very hard to make AI development more efficient, so we’re less
likely to stumble upon a new process with comparably large efficiency gains.

Reply: AI development could be more efficient than evolution and there still be efficiency gains
of comparable size to the efficiency gain of human R&D over evolution. Gradient descent is not
much smarter than evolution, and seems a long way off from an optimal method for increasing
AI capabilities. Just as R&D made much more efficient use of human neurons, the new process
X will use the AI’s cognitive resources much more efficiently to improve its capabilities.

Objection: But none of the candidates for X (better learning rules, better AI-AI coordination,
managing your own cognitive resources) seem to involve similarly large efficiency gains. They
don’t involve an entirely new kind of process driving improvements in the same way cultural
evolution is a completely different kind of process to biological evolution.

Reply: First, all those candidates seem like they could involve big efficiency gains. Secondly,
the failure to easily imagine candidates for X is weak evidence that X doesn’t exist. Aliens
wouldn’t have predicted that cultural evolution would occur, had they been looking down on
earth 2 millions years ago.

My overall take
This argument does update me towards C=“maybe some new AI technique will be developed
over the course of a few months and cause AI capabilities to improve OOMs faster”.

But the update is relatively small (this feels like evidence i’m ~2-3X as likely to see in worlds
where C is true):

● We haven’t actually observed ‘hypothetical evolution’ so don’t know what would happen.



● Even if we had, it’s just one example so provides limited evidence.
● Evolution is different from “the process of AI R&D” in some important ways. (They would

be much more analogous if AI R&D simply consisted of one massive gradient descent
training run. I flesh this out in the final objection, which I find pretty convincing.)

● This line of argument can be interpreted as “evidence for an extremely narrow FLOP
gap”, but the evidence seems more speculative and indirect than the numerous other
sources of evidence I considered. So it doesn’t seem like this should substantially shift
my probability distribution over the FLOP gap.

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28
https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.o4db3tcgrq28

